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Abstract 

An increased amount of toxins has collected in the environment (air, water, and soil), and traditional methods 
for managing these pollutants have failed miserably. Advancement in modern remediation techniques could be one 
option to improve bioremediation and waste removal from the environment. The increased pollution in the envi-
ronment prompted the development of genetically modified microorganisms (GEMs) for pollution abatement 
via bioremediation. The current microbial technique focuses on achieving successful bioremediation with engineered 
microorganisms. In the present study, recombination in E. coli will be introduced by either insertion or deletion 
to enhance the bioremediation properties of the microbe. Bioremediation of domestic and industrial waste per-
formed using recombinant microbes is expensive but effectively removes all the waste from the environment. When 
compared to other physicochemical approaches, using microbial metabolic ability to degrade or remove environ-
mental toxins is a cost-effective and safe option. These synthetic microorganisms are more effective than natural 
strains, having stronger degradative capacities and the ability to quickly adapt to varied contaminants as substrates 
or co-metabolites. This review highlights the recent developments in the use of recombinant E. coli in the biodegrada-
tion of a highly contaminated environment with synthetic chemicals, petroleum hydrocarbons, heavy metals, etc. It 
also highlights the mechanism of bioremediation in different pollution sources and the way in which this genetically 
altered microbe carries out its function. Additionally, addressed the benefits and drawbacks of genetically engineered 
microbes.
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Introduction
The advent of global industrialization has brought about 
critical environmental challenges with pollution being 
a significant concern. While industrialization has con-
tributed significantly to economic development, tech-
nological advancements, and improved living standards 
for human being, but simultaneously, it has also led to 
adverse environmental impacts particularly in the con-
text of pollution of the environment [1]. Environmental 
pollution refers to the degradation of the natural envi-
ronment because of the introduction of pollutants. There 
are several types of environmental pollution including 
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air pollution, water pollution, and soil pollution [2–5]. 
Pollutants encompass substances that, while sometimes 
naturally occurring, are deemed contaminants when sur-
passing natural levels. Pollutants can be categorized into 
biodegradable and nonbiodegradable types. Biodegrad-
able pollutants, like phosphates and organic waste, can be 
broken down by living organisms. In contrast, nonbiode-
gradable pollutants, such as plastics, metals, pesticides, 
glass, and radioactive isotopes, resist decomposition by 
living organisms, persisting in the ecosphere for extended 
periods [6].

Environmental pollution, a ubiquitous and pressing 
issue, casts a looming shadow over the planet, threaten-
ing the delicate balance of ecosystems and endangering 

the health of both flora and fauna, including humans. 
From air and water pollution to soil contamination, the 
consequences of human activities on the environment 
are manifold and far-reaching [7]. The call for India to 
prioritize environmental protection amid its rich biodi-
versity and stark socio-economic disparities has never 
been more urgent. Joutey et  al. and Rabani et  al. [8, 9] 
underscore the critical need for India to balance eco-
nomic development with environmental conserva-
tion. The government of India has taken major steps to 
prevent pollution in our country (Table  1). Addressing 
environmental pollution requires a combination of regu-
lations, technological advancements, public awareness, 
and sustainable practices to minimize and mitigate the 

Table 1  Govt. programs/initiatives to reduced pollution-causing agents in India

Pollutants Programs Year Steps taken

Air National Air Quality Monitoring Programme (NAMP) 2018 Regular monitoring of mainly four air pollutants, viz., SO2, NO2, 
suspended particulate matter (PM10), and fine particulate matter 
(PM2.5), in 307 cities/towns in 29 states and 6 union territories 
of the country

National Ambient Air Quality Standards (NAAQS) 2009 To check the quality of the outdoor air (industrial, residential, 
rural, and other areas) Sulfur dioxide (SO2), nitrogen dioxide 
(NO2), particulate matter, ozone, lead, carbon monoxide, ammo-
nia, etc

National Air Quality Index (AQI) 2014 Monitoring eight pollutants (PM10, PM2.5, NO2, SO2, CO, O3, NH3, 
and Lead (Pb)), 71 cities in 17 states of country

Forty-Two Action Points - To counter air pollution, which include control and mitigation 
measures related to vehicular emissions, resuspension of road 
dust and other fugitive emissions, biomass/municipal solid waste 
(MSW) burning, industrial pollution, construction and demolition 
(C&D) activities, mainly in Delhi and NCR area

Environment Pollution (Prevention and Control) Authority 
(EPCA)

1998 Proper control and observation of environmental pollution 
in the NCR region

Graded Response Action Plan (GRAP) - Action plan for Delhi and the NCR region

Advanced Vehicle Emission and Fuel Quality Standards — BSIV 2017 Reduction and observation of vehicle emission pollutants

Advanced Vehicle Emission and Fuel Quality Standards — BS-VI 2020

National Electric Mobility Mission Plan 2020

Soil E-waste (management) 2018 Soil waste management

Biomedical Waste Management Rules
Plastic Waste Management Rules
Solid Waste Management Rules
Construction and Demolition Waste Management Rules

2016

Hazardous and Other Waste (Management and Transboundary 
Movement) Rules 2019

2019

National Green Tribunal Act 2010

Water Water (Prevention & Control of Pollution) Act 1974 Amended deals with natural water bodies issues

Water Cess Act 1977 Impose a cess on water abstracted from natural resources 
by industries and local authorities

Coastal regulation zone 2019 -

Regulatory 
authorities

The key regulatory authorities are the following:

• Ministry of Environment, Forests and Climate Change (MoEFCC)

• Central Pollution Control Board (CPCB)

• State Pollution Control Board (SPCBs)

• District Level Authorities
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impact of pollutants on the planet. Numerous laws have 
been enacted to tackle the escalating pollution levels and 
set emission standards [10]. These legislative measures 
represent crucial milestones in India’s environmental 
stewardship journey.

Dealing with pollution is a complex challenge, and 
various methods, both physical and chemical, have been 
employed to address the pervasive environmental issues 
(Table  2). However, their effectiveness and cost often 
limit their widespread use. Natural solutions, while safe 
and effective, face challenges due to the rapid accumula-
tion of pollution from industrialization and the presence 
of nonbiodegradable synthetic materials [11, 12]. Physi-
cal methods, such as filtration and soil excavation, can be 
time-consuming and costly. Chemical alternatives, on the 
other hand, may pose inherent dangers to the environ-
ment and human health. Moving forward, it is imperative 
for India to adopt a holistic approach to environmental 
conservation—one that integrates environmental con-
siderations into all aspects of policymaking and devel-
opment planning. This approach should prioritize the 
protection of ecosystems, biodiversity, and public health 
while fostering sustainable economic growth and social 
equity. Advances in science and technology play a crucial 
role in pollution mitigation.

In response to these limitations, bioremediation has 
emerged as a promising and environmentally friendly 
approach. Bioremediation involves the use of micro-
organisms to assimilate, digest, or transform hazard-
ous substances into less harmful or nontoxic forms 
[13–15]. Microorganisms exhibit remarkable capabilities 

in degrading, detoxifying, and even accumulating toxic 
organic and inorganic substances [16, 17]. The use of 
genetically modified organisms (GMOs), such as the 
genetically modified Escherichia coli, has become a pow-
erful tool in the field of bioremediation. These engineered 
microorganisms are designed to efficiently remove tox-
ins that indigenous bacteria may struggle to break down, 
offering a targeted and effective approach to environ-
mental cleanup [18]. In contemporary bioremediation 
methods, genetically modified organisms play a pivotal 
role in addressing environmental pollution, particu-
larly in  situations where natural bacterial populations 
are insufficient to handle specific pollutants. The intro-
duction of a foreign gene into bacteria transforms them 
into unique strains with enhanced capabilities for rapidly 
breaking down pollutants, such as hydrocarbons, in the 
environment [19]. The use of genetically modified E. coli 
in bioremediation has several advantages such as preci-
sion, efficiency, and versatility. However, it is essential to 
consider potential ethical and ecological concerns asso-
ciated with the release of genetically modified organisms 
into the environment. Robust containment measures and 
thorough risk assessments are crucial to prevent unin-
tended consequences. Therefore, in this article, the use of 
genetically modified E. coli in bioremediation is discussed 
which exemplifies the intersection of biotechnology and 
environmental science, offering innovative solutions to 
address pollution challenges. As technology continues to 
advance, the application of genetic engineering in biore-
mediation holds significant promise for developing tai-
lored and efficient approaches to environmental cleanup.

Table 2  Measurements of air pollutants (https://​metnet.​imd.​gov.​in, https://​www.​env.​go.​jp)

Pollutants Method Instrument

SO2 Ultraviolet fluorescence method (analyzed sample is exposed to UV-lamp irradia-
tion with energetic excitation of SO2 molecule)

Fluorescence analyzer

NOx (NO, NO2, and NOx) Chemiluminescence method (nitrogen molecule excitation by ozone) Chemiluminescence analyzer

NH3 Chemiluminescence method (same principles as a NOx analyzer, but with an 
ammonia converter)

Chemiluminescence analyzer

CO Gas-filter correlation (GFC) spectroscopy (absorption of infrared radiation 
by the CO molecule)

NDIR gas-filter correlation (GFC) spec-
troscopy or gas chromatography-flame 
ionization

Suspended particulates 
matter (SPM)
Mineral dust, organic 
dust, metallic com-
pounds

Air sampler (SPM is measured by sucking air through a filter and determining 
the weight of dust collected)
Absorption spectrophotometry fluorescence analysis

High-volume air sampler
Absorption spectrophotometer
High-performance liquid chromatography

BTEX Gas chromatograph (detector is specific to volatile organic compounds — ben-
zene, toluene, ethylbenzene, and xylene’s)

BTEX analyzer

Ozone Total ozone measurement by Dobson spectrophotometer (measuring the relative 
intensities of selected pairs of ultraviolet wavelengths)

Dobson spectrophotometer

Organic gas (vapor) Vessel method, adsorption method, coolant condensation method Infrared spectrophotometry, gas chro-
matography, high-performance liquid 
chromatography

https://metnet.imd.gov.in
https://www.env.go.jp
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Bioremediation
To deal with pollution, a variety of methods (physi-
cal and chemical) are available. Due to their high cost 
and low effectiveness, most of them are of limited use. 
Physical methods are time-consuming and expensive, 
whereas chemical alternatives are inherently danger-
ous. Natural solutions are safe and effective, although 
they are sluggish and becoming less effective as a result 
of industrialization’s rapid pollution buildup and non-
biodegradable synthetic materials [11, 12]. Bioreme-
diation is gradually becoming the standard method for 
restoring contaminated with heavy metals because it 
is efficient and cost-effective technology for the trans-
formation of contaminants [13–15]. Biodegradation 
is a series of chemical reactions that occur in the pres-
ence of living organisms such as bacteria, fungi, yeast, 
algae, and insects in an environment with optimal light, 
temperature, and oxygen [20]. Microbes mitigate heavy 
metals and improve soil fertility, and plant development 
makes them more preferable source for bioremedia-
tion. The molecular nature, gene and enzyme induction, 
metabolite production, growth efficiency, and survival 
rate all influence individual bacteria’ potential to act as 
bioremediation agents [21]. At higher moisture rate, 
anaerobic condition persists which slow down the deg-
radation rate. In cold condition, microbial degradation of 
heavy metal is slow, as metabolic activities are inhibited 
as the microbial transport routes are frozen by the sub-
zero water [22, 23]. Similarly, at higher temperature, the 
rate of heavy metal solubility increases, which increases 
their availability and the rate of microbial biodegrada-
tion [24]. The rate of microbial biodegradation is deter-
mined by the metal or pollutant’s chemical structure, 
bioavailability, concentration, toxicity, and stability. The 
degradation of the n-alkanes is more effortless in com-
parison to the branched alkanes, aromatics with low 
molecular weight, hydrocarbons with high molecular 
weight, and the asphaltenes [25]. Molecular mechanisms 
play a crucial role in deciphering the microbial metabo-
lism, genes, characteristics, variety, and fluctuations of 
microorganisms engaged in microbial remediation. Met-
abolic and protein analysis, sequencing, and the utiliza-
tion of sophisticated bioinformatics tools are specifically 
employed to decipher the various categories of microor-
ganisms and the factors influencing them in the bioreme-
diation process [23].

Microorganisms currently employed in bioremedia-
tion have the potential to be genetically engineered in 
order to augment their enzymatic production, thereby 
amplifying their capacity for biodegradation. These 
organisms’ genetic architecture makes them useful for 
biodegradation, biotransformation, biosorption, and 
bioaccumulation [26] (Fig.  1). The use of recombinant 

DNA allows an organism to develop the ability to 
digest a xenobiotic via degradative genes. Recombinant 
microorganisms and genetically modified microbes 
have been used as an effective technique for pollution 
breakdown [27]. In the current bioremediation tech-
nique, genetically modified organisms are employed to 
efficiently eliminate pollutants that native bacteria are 
unable to decompose [18]. There are varieties of bacte-
ria reported to be capable of feeding on hydrocarbons 
under anaerobic and aerobic conditions [28]. Toxic 
substances may be converted to nontoxic ones by the 
bioremediation process by a variety of bacteria species 
such as Achromobacter, Pseudomonas, Dehalococcoides, 
Rhodococcus, Comamonas, Burkholderia, Alcaligenes, 
Bacillus subtilis, Aspergillus niger, Deinococcus radio-
duran, Acidithiobacillus ferrooxidans, Mesorhizobium 
huakuii, Pseudomonas K-62, Ralstonia, Rhodopseu-
domonas palustris, and Sphingomonas [29]. Similarly, 
nitrate-reducing bacterial strains, Brevibacillus sp. and 
Pseudomonas sp., were identified in petroleum-con-
taminated soil. Bacillus, Corynebacterium, Staphylococ-
cus, Streptococcus, Shigella, Alcaligenes, Acinetobacter, 
Escherichia, Klebsiella, and Enterobacter were the best 
hydrocarbon-degrading bacteria [30].

Microbe’s genetic sequences have been manipulated 
keeping specific goal in mind [31]. The term “geneti-
cally engineered organisms” (GEMs) refers to microor-
ganisms (bacteria, fungi, and yeast, among others) that 
have been altered by humans utilizing molecular biology 
in  vitro procedures [32]. There has been an explosion 
in the expansion of genetic engineering and recombi-
nant DNA in breeding microorganisms, resulting in a 
huge number of bacteria with effective engineering that 
boosted pollutant-degrading abilities [18, 27, 33]. Biore-
mediation research is awaiting the introduction of gene 
editing technologies that produce knock-in and knock-
out. According to recent articles, researchers have mostly 
used the CRISPR-Cas system with model organisms such 
as Pseudomonas or E. coli [34]. Even non-model organ-
isms like Achromobacter sp. HZ01 and Comamonas testo-
steroni may be employed for bioremediation due to new 
insights into CRISPR tools and the synthesis of gRNA 
to express function-specific genes pertinent to remedia-
tion [35, 36]. In experiments involving organophosphate 
and pyrethroid bioremediation, genetically altered Pseu-
domonas putida KT2440 was employed [37]. White rot 
fungus produces enzymes that break down polycyclic 
aromatic hydrocarbons (PAHs), TNT (2,4,6-trinitro-
toluene), and polycyclic aromatic hydrocarbons (PCBs). 
When the enzyme esterase D combines with the insecti-
cide endosulfan (an organochlorine), it produces simpler 
molecules. LiP-encoded hemoproteins in Phanerochaete 
chrysosporium degrade PAHs [38].
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Recombinant E. coli in bioremediation
E. coli is a rod-shaped facultative coliform bacterium 
belonging to the genus Escherichia that measures only 
about 1 µm long by 0.35 µm wide. It is one of the model 
organisms used in bioremediation (Fig.  2). E. coli is 
generally known as the “work horse” of molecular biol-
ogy for its fast growth rate in chemically defined media 
and the various tools available for its genetic modi-
fications. E. coli harbors a genome with features like 
an organized structure, a remnant of many phages, 
insertion sequences (IS), and high transport capacity 
towards the cytoplasm [39]. E. coli is a preferred host 
for gene cloning due to the ease with which DNA mol-
ecules may be introduced into the cells. Protein pro-
duction in E. coli is expected due to the strain’s rapid 
growth and high protein expression levels [40]. Various 
studies show that enteric bacterium like E. coli form 
phenol and p-cresol when grown on natural media 
(peptone and casein media) as well as in chemically 
defined media, i.e., L-tyrosine and p-hydroxybenzoic 
acid media [41]. According to a study conducted by 
Burlingame and Chapman [42] in 1983, it was found 
that E. coli has the capability to mineralize several 
aromatic acids, such as PA (phenylacetic acid), HPA 
(hydroxyphenylacetic acid), PP (phenyl propionic acid), 

3HPP (hydroxyl phenyl propionic acid), and 3HCl. 
These research findings emphasized the ability of E. coli 
to break down and utilize a diverse range of aromatic 
acids [22]. An E. coli bacterium that has been geneti-
cally modified is employed as a highly effective agent 
in the process of bioremediation. The incorporation 
of a gene into bacteria results in the conversion of the 
bacteria into a distinct strain that possesses the ability 
to efficiently eliminate hydrocarbon pollutants from 
the surrounding environment (Fig.  3) [19]. There exist 
multiple methods for manipulating microbial genetics 
through genome editing, each of which is quite efficient 
and has been used in E. coli genome editing, making it 
capable of degrading pollutants and converting them to 
less harmful molecules [43]. The curli of an E. coli cell 
was genetically modified to produce BIND-PETase [40]. 
The E. coli SE5000 strain underwent genetic modifica-
tion by introducing the nixA gene, which enables the 
expression of a nickel transporting system. This system 
has the ability to degrade nickel from aqueous system 
[44, 45]. The E. coli FACU strain possesses a significant 
capacity to reduce Cr (IV) to Cr (III) exhibiting great 
potential as a viable agent in the bioremediation of haz-
ardous chromium species in aerobic environmental 
conditions [46].

Fig. 1  Different approaches adapted by the microbes for the degradation of toxic compounds
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General mechanism of degradation of pollutant 
by recombinant microbe
Genetic manipulation possesses the ability to create 
or mend microorganisms, leading to the development 
of biological detection systems that exhibit enhanced 
internal robustness, specificity, and resilience in various 
environments. Genetically engineered microorganisms 

(GEM) refer to microorganisms that have undergone 
genetic modifications using techniques of genetic engi-
neering (inspired by the natural genetic exchange 
observed between microorganisms) [47, 48]. GEMs 
(genetically engineered microbes) have shown promise 
in the bioremediation of soil, groundwater, and activated 
sludge, with improved degrading capabilities for a variety 

Fig. 2  Mechanism of biosorption on the basis of cell metabolism and its location within cell or metal removable

Fig. 3  Overview of bioremediation methods
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of chemical contaminants [28]. Microbes possess inher-
ent biological mechanisms that enable them to withstand 
intense metal stress or eradicate metals from their sur-
roundings. Microbial bioremediation employs the follow-
ing mechanisms [49]:

(1) Cell wall components or intracellular metal-
binding proteins and peptides, such as metallothio-
neins (MT) and phytochelatins, play a crucial role in 
sequestering toxic metals. Additionally, substances 
like bacterial siderophores, which are mainly cat-
echolates, are also involved in this process. It is worth 
noting that fungi produce hydroxamate siderophores 
[50].
(2) Altering metabolic processes directly blocks 
metal uptake.
(3) Enzymes are used to convert metals into harmless 
forms.
(4) Efflux mechanisms have the potential to decrease 
metal levels within the intracellular milieu.

Environmental contaminants such as chlorobenzene 
acids, toluene, and other halogenated insecticides and 
toxic wastes are broken down into less harmful forms by 
using important genes. A different plasmid is required for 
each chemical [51, 52]. Plasmids are classified into four 
groups [53].

1) OCT plasmid (degrades octane, hexane, and 
decane).
2) XYL plasmid (degrades xylene and toluenes).
3) CAM plasmid (degrades camphor).
4) NAH plasmid (degrades naphthalene).

The appearance and dissemination of genes that break 
down pesticides can yield a beneficial impact on the elim-
ination of hazardous waste from the surroundings. The 

potency of E. coli in the degradation of various pollutants 
has been shown in Table  3. The genetically engineered 
strain of E. coli is able to express the Hg2+ and metal-
lothionein transport systems. Excessive exposure to Sac-
charomyces cerevisiae glutathione S-transferase fusion 
protein and pea metallothionein significantly increased 
Hg2+ expression delivered by MerP and MerT, which 
protect cells from Hg2+ [54, 55]. Similarly, horizontal 
gene transfer (HGT) methods have been employed for 
incorporating petrol-contaminated organisms with E. coli 
carrying the vector pSF-OXB15-p450 cam fusion, which 
showed that E. coli bacteria are useful for the degradation 
of heavy metals [56]. Recombinant E. coli that expresses 
the metallothionein gene (Neurospora crassa) for Cd 
uptake was created using plasmid-encoded biochemical 
information and genetic engineering techniques, yielding 
a significantly faster Cd uptake than the donor microbe 
[57].

Different types of pollution and their 
bioremediation using recombinant E. coli
Soil contamination
Soil is an essential ecosystem consisting of both living 
and nonliving elements. The entirety of the natural world 
relies on soil in various ways. It serves as a connection 
between the biosphere, atmosphere, and hydrosphere, 
thereby playing a crucial role in maintaining the ecologi-
cal equilibrium [67]. There exists a disagreement in the 
definition of “soil contamination.” According to certain 
viewpoints, soil is deemed contaminated when the con-
centration of chemicals exceeds its typical range. While 
some individuals express concerns regarding the estab-
lishment of the standard range for pollutants. Hence, 
it can be asserted that “soil which is unsuitable for uti-
lization and incapable of fulfilling its purpose is deemed 
as contaminated” [68]. The quality of soil and its role 
in ecological balance are affected by the addition of 

Table 3  Genetically modified E. coli strains for bioremediation

Pollution treated Bioremediation process References

Water pollution Bioremediation potential of cadmium by recombinant E. coli surface expressing metallothionein MTT5 from Tetrahy-
mena thermophila

[58]

E. coli strains (XL10 Gold, DH5α, and six types of BL21 (DE3)) showed bioremediation capacity against copper [59]

E. coli SE5000 strain showed bioremediation capacity against Ni2+ [60]

E. coli expressing metallothionein protein affecting against cadmium [61]

Soil pollution E. coli SE5000 strain express nickel transporting system: nixA which degrade nickel from aqueous system [62]

Engineered E. coli with atzA gene was proven to be successful in remediating soil polluted by atrazine [63]

E. coli JM109 expressed merT–merP protein and metallothionein (MT) which degraded mercury [64]

Engineered E. coli with linA and mpd genes was responsible for organochlorine and organophosphate degradation [65]

E. coli DH5α containing alkB, almA, xylE, ndo, and p450cam is responsible for petroleum hydrocarbon degradation [56]

E. coli BL21 containing PbrR, PbrR691, and PbrD genes is help in lead adsorption [66]
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soil contaminants due to natural processes and human 
activities like industrial wastes, the use of fertilizers in 
agricultural activities, and domestic and commercial con-
struction [69]. Broadly, two types of contaminants con-
tribute to soil pollution: inorganic and organic. In the 
category of inorganic pollutants, heavy metals are placed 
at the top of the list and are present in most of the con-
taminated sites. The most common toxic heavy metal 
contaminants found in soil include mercury (Hg), arsenic 
(As), copper (Cu), cadmium (Cd), chromium (Cr), Zinc 
(Zn), lead (Pb), and nickel (Ni) [70]. These soil contami-
nants sink into the soil through bad agricultural prac-
tices, inefficient industrial effluent disposal techniques, 
unauthorized waste dumping, etc. The persistence of 
heavy metals in natural environments presents a more 
formidable obstacle in comparison to organic contami-
nants, as they exhibit resistance to both microbial and 
chemical degradation. As a result, the elimination of 
heavy metals becomes a long-lasting challenge once they 
are introduced [71]. Organic contaminants encompass 
carbon-containing substances, regardless of the presence 
or absence of functional groups within their structures. 
The list of organic contaminants that contribute to soil 
pollution includes insecticides (e.g., captan, benomyl, 
endosulfan, heptachlor), herbicides (atrazine, alachlor, 
acetochlor, etc.), oil hydrocarbons (e.g., alkanes, alkenes), 

chlorinated compounds (e.g., polychlorinated biphenyls 
(PCB), polychlorinated dibenzodioxins (PCDD), poly-
chlorinated dibenzofurans (PCDF)), aromatic hydrocar-
bons (e.g., BTEX, i.e., benzene, toluene, ethylbenzene, 
xylene), biocides (benzalkonium chloride), and polycyclic 
dibenzo-p-dioxins (e.g., benzopyrene, chrysene, fluoran-
thene) [72]. Persistent organic pollutants (POPs) are clas-
sified as organic contaminants, which are regarded as the 
most prioritized category of organic contaminants due 
to their high toxicity, carcinogenic properties, and abil-
ity to bioaccumulate in the environment [73]. Taking this 
into consideration, numerous nations have implemented 
limitations or outright prohibited the utilization and pro-
duction of persistent organic pollutants (POPs). The POP 
compounds encompass substances such as DDT, endrin, 
hexachlorobenzene, PCBs, PCDD, PCDF, and others [68, 
74] (Fig. 4).

Traditionally, various techniques are used to remove 
the soil contaminants, including extraction and separa-
tion techniques, thermal methods, chemical methods, 
microbial treatment methods, solid waste treatments, 
and phytoremediation (Table 4). The existing treatments 
for soil pollution, as discussed above, are not very suc-
cessful in the removal of contaminants; sometimes, 
they bring down the concentration of contaminants at 
the cost of soil quality. Some of the techniques are also 

Fig. 4  Direct enzymatic and indirect mobilization of radionuclides by metal-reducing microorganisms via capturing of electrons derived by organic 
compounds (lactate and acetate)
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less cost-effective [75, 76]. The main objective of soil 
remediation is not just the elimination of contaminants 
but also to restore the quality of the soil. So, we need to 
shift towards a new approach that gives better and more 
desirable results in terms of the elimination of pollutants 
and the restoration of soil quality [77]. Bioremediation is 
one of those approaches on which we can rely. In recent 
years, bioremediation has emerged as a great alternative 
to existing treatments as it is economical and does not 
compromise the health of the soil [78].

Recombinant E. coli strain used for bioremediation of soil
The various studies done by Almaguer-Cantú et  al. 
[80] on the removal of heavy metal contaminants from 
soil reported that genetically modified E. coli cells with 
overexpression of pea metallothionein MT improve the 
biosorption of Ni2+ and efficiently remove Ni2+ contami-
nation from the affected sites. The elimination of hazard-
ous metals from a polluted area through the utilization 
of biosorbent cell surface components of microorganisms 
is known as biosorption [81]. These biosorbent cell sur-
face moieties are present on the outer surfaces of fungi, 
algae, and bacteria. Bacteria are widely regarded as the 
superior biosorbent when compared to other microor-
ganisms [82]. This is primarily attributed to their posses-
sion of chemosorption sites such as teichoic acid, as well 
as their remarkable surface-to-volume ratio. These char-
acteristics greatly enhance their biosorption capabilities 
[83]. In a study done in the United States for the removal 
of atrazine contamination from the contaminated fields 
by using recombinant E. coli encapsulating AtzA, which 
is responsible for the degradation of atrazine, they 
observed that after 8 weeks of inoculation, atrazine lev-
els decreased by 52% and 77% (Table 5) in plots contain-
ing killed recombinant E. coli cells and combinations of 
phosphate, respectively [63, 84].

The successful elimination of oil contaminants in 
soil caused by oil spills can be achieved through the 

introduction of genetically modified E. coli cells con-
taining catabolic genes [92]. The overexpression of three 
enzymes, namely almA, xylE, and p450cam, results in 
the degradation of petroleum hydrocarbon. According to 
their research, this genetically modified E. coli was able to 
decrease the level of petroleum hydrocarbon concentra-
tion by as much as 46% after a period of 60 days follow-
ing inoculation [56]. Mercury (Hg) is a hazardous heavy 
metal and a significant inorganic pollutant found in soil, 
which can have harmful consequences on the organ-
isms inhabiting contaminated areas. When it infiltrates 
the human body through the food chain, it gives rise to 
serious ailments such as neural disorders and respira-
tory disorders, occasionally leading to fatality. Geneti-
cally modified E. coli JM109 cells can assist in eliminating 
the Hg2+ contamination present in the soil [93]. This 
strain of E. coli has been genetically modified to produce 
the merT-merP protein and metallothionein, which are 
responsible for the accumulation of Hg2+ in the organ-
ism [64]. E. coli SE5000, a genetically modified strain, 
possesses the GSM-MT and nixA genes. The nixA gene 
is accountable for the activation of the Ni2+ transport 

Table 4  Various techniques used for treatment of soil pollution

Sr. no Technique Basic approach Application References

1 Extraction and sepa-
ration technique

Removal by the use of extracting agents usually organic solvents Removal of heavy metals, hydrocar-
bons, and halogenated hydrocar-
bons

[79]

2 Thermal treatment Two ways of heat treatment: Used for the removal of volatile con-
taminants like toluene and trichlo-
roethylene

[79]

a) Removal of contaminants using the evaporation method

b) Destruction of contaminants at an appropriate temperature

3 Chemical method Use of strong inorganic acids, weak organic acid, and chelating 
agent, i.e., HCl, HNO3, H2SO4, H3PO4, NTA, EDTA

Removal of heavy metals, PTE, etc [26]

4 Solid waste treatment Chemical, physical, and biological treatment of waste by landfill-
ing, excavation, incineration

Mainly for industrial waste treatment [79]

Table 5  Various genetically engineered bacteria used for the 
removal of heavy metal contamination in soil

S. no Genetically engineered 
bacteria species

Targeted 
heavy metals

References

1 Ralstonia eutropha CH34 Cd [44]

2 Mesorhizobium huakuii B3 Cd [85]

3 Pseudomonas putida 06909 Cd [86]

4 Pseudomonas fluorescens OS8 Cd [87]

5 B. subtilis BR151 (pTOO24) Cd [88]

6 Sphingomonas desiccabilis As [89]

7 Moraxella Hg [90]

8 Pseudomonas K-62 Hg [91]

9 Pseudomonas fluorescens OS8 Pb [87]

10 Pseudomonas fluorescens OS8 Zn [87]
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system, enabling it to effectively eliminate Ni2+ contami-
nation. On the other hand, GSM-MT is responsible for 
the increased production of metallothionein in the form 
of a glutathione S-transferase fusion protein [94].

Air pollution
Despite the remarkable advancements in technology, 
society, and the provision of various services, the Indus-
trial Revolution had a detrimental impact on human 
health due to the significant release of pollutants into the 
air (http://​www.​who.​int/​airpo​lluti​on/​en/). Air pollution 
is the term used to describe the existence of detrimen-
tal substances in the atmosphere of our planet, which has 
adverse effects on both human well-being and the envi-
ronment [95, 96]. The increase in economic growth has 
been accomplished by elevated energy consumption. The 
rapid urbanization in India, coupled with swift economic 
progress, has led to a surge in air pollution levels within 
megacities [97]. Particulates, greenhouse gases, and 
smog-forming substances such as sulfur dioxide (SO2), 
ground-level ozone (O3), nitrogen oxides (NO2), and 
volatile organic compounds, are all major air pollutants 
(VOCs) [98, 99]. Air pollution has adverse effects not 
only on humans but also on the marine environment and 
is responsible for climate change too. The degradation of 
the earth’s atmosphere is closely linked to the relation-
ship between climate change and air pollution. The ele-
vated concentrations of methane, black carbon, aerosols, 
and tropospheric ozone disturb the incoming solar radia-
tion. Consequently, the temperature is on the rise, lead-
ing to the melting of icebergs, ice, and glaciers [22, 100]. 
The World Health Organization provides information 
on different categories of air pollutants, such as particle 
pollution, ground-level ozone, carbon monoxide, sulfur 
oxides, nitrogen oxides, and lead. In 2011, Delhi recorded 
a PM10 level of 198 μg m−3, which exceeds the minimum 
limit by a factor of 10 [101, 102]. In May 2014, the city 
of New Delhi earned the unfortunate distinction of being 
the most polluted city in the world, according to the 
World Health Organization (WHO). This was primarily 
attributed to the high concentration of particle matter 
(PM) with a diameter less than 2.5 µm, which exceeded 
350 µg per cubic meter of air in New Delhi. (http://​www.​
thegu​ardian.​com/​news/​datab​log/​2015/​jun/​24/​air-​pollu​
tion-​delhi-​is-​dirty-​but-​how-​do-​other-​cities-​fare) [95]. 
A conference titled “Impact of Disease: Air Pollution as 
a Leading Cause” was organized in New Delhi on Febru-
ary 13, 2013, by the Centre for Science and Environment 
(CSE) in collaboration with the Health Effects Insti-
tute, Boston, USA, and the Indian Council of Medical 
Research, New Delhi (http://​www.​csein​dia.​org/​conte​nt/​
works​hop-​global-​burden-​disea​se-​air-​pollu​tion-​among​st-​
top-​kille​rs-​india).

Air pollution can be easily dispersed and transported 
between different areas. This detrimental pollution leads 
to significant issues for both the environment and human 
health. Consequently, it is imperative to discover effec-
tive decontamination strategies in order to cleanse the 
environment. The process of decontamination must be 
carried out in a manner that safeguards the well-being of 
both animals and humans while also promoting the cir-
culation of clean air [31] (Perera and Hemamali, 2022). 
Consequently, there is an increasing desire to discover 
efficient methods for remediating polluted areas, whether 
partially or entirely, in order to restore their environmen-
tal integrity [103, 104].

Degradation of air pollutant by recombinant E. coli microbe
Bacteria facilitate the breakdown of dangerous chemicals 
through an assimilative mechanism, wherein they acquire 
carbon and energy to support their growth, ultimately 
leading to the conversion of the compound into minerals 
[105, 106]. The bacteria responsible for PAH degradation 
include Achromobacter sp., Bacillus sp., Mycobacterium 
sp., Burkholderia sp., Pseudomonas sp., Rhodococcus sp., 
Stenotrophomonas maltophilia, Sphingomonas sp., Xan-
thomonas sp., and Xanthomonas sp. [107, 108]. The initial 
stage of hydrocarbon degradation involves the transfor-
mation of polycyclic aromatic hydrocarbon (PAH) or 
alkane chain into basic alcohol, subsequently convert-
ing into aldehyde and ultimately resulting in water, car-
bon dioxide, and biomass through oxidation. Oxidation 
also leads to the conversion of reduced sulfur molecules 
like H2S into inorganic sulfur and thiosulfate, forming 
corrosive sulfuric compounds [101, 109]. H2S advance 
oxidation is completed by chemolithotrophs. Sulfate is 
ingested through the sulfate start pathway, which is made 
up of three responses: adenosine 5′-phosphorylation of 
APS, GTP hydrolysis, and APS 3′-phosphorylation to 
deliver 3′-phosphoadenosine 5′-phosphosulfate (PAPS) 
[110, 111]. Microbes that degrade sulfate have the ability 
to use hydrocarbons and hydrolyze complicated chemi-
cals in soil, according to Rennenberg [112]. Besides, a 
designed strain able of debasing PAHs was made in E. 
coli by communicating salicylate oxygenase, a protein 
encoded by bphA2cA1c from Sphingomonas yanoikuyae 
B1 [113]. The pGEX-AZR/E. coli JM-109 strain was 
genetically engineered, resulting in enhanced efficiency 
for decomposing various azo dyes [114].

Water pollution
The express “water contamination” is characterized 
in an assortment of ways by different committees, 
with the objective of making strides the quality of 
our environment. Agreeing to the head of the science 
committee, Washington, USA, in 1965, characterized 

http://www.who.int/airpollution/en/
http://www.theguardian.com/news/datablog/2015/jun/24/air-pollution-delhi-is-dirty-but-how-do-other-cities-fare
http://www.theguardian.com/news/datablog/2015/jun/24/air-pollution-delhi-is-dirty-but-how-do-other-cities-fare
http://www.theguardian.com/news/datablog/2015/jun/24/air-pollution-delhi-is-dirty-but-how-do-other-cities-fare
http://www.cseindia.org/content/workshop-global-burden-disease-air-pollution-amongst-top-killers-india
http://www.cseindia.org/content/workshop-global-burden-disease-air-pollution-amongst-top-killers-india
http://www.cseindia.org/content/workshop-global-burden-disease-air-pollution-amongst-top-killers-india
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water contamination as an alteration within the physi-
cal, compound, and organic qualities of water that 
will cause risky impacts on human and maritime life. 
Nowadays, it is not only concerned with public health 
but also with destroying natural beauty, resources, 
aesthetics, and the conservation of water [115, 116]. 
Numerous anthropogenic exercises are related to 
water contamination and have driven to water quality 
disintegration, like industrialization, chemical-related 
cultivating, broad urbanization, and populace devel-
opment [117]. There are two sorts of sources that are 
included in water contamination, i.e., point sources 
and nonpoint sources. The coordinate identifiable 
source, or where coordinate association is appeared, is 
known as a point source, such as mechanical effluents, 
oil spills, and metropolitan and mechanical squander 
water effluents. In terms of nonpoint sources, diverse 
sources are included within the event of water con-
tamination, primarily urban squander, runoff from 
rural areas, radioactive water (from atomic reprocess-
ing plants), and contaminants that enter ground-level 
water [49]. Water contamination is caused by a variety 
of factors, the most prominent of which being urbani-
zation (higher phosphorus concentrations in urban 
catchments sewage waste (massive increase in the 
growth of algae or plankton that facilitate huge areas 
of oceans, lakes, or rivers), industrial waste (wastes 
containing acids, alkalis, dyes, and other chemicals), 
agro-chemical waste (include fertilizers, pesticides 
which may be herbicides and insecticides), nutrient 
enrichment, thermal pollution (nuclear power and 
electric power plants, petroleum refineries, steel melt-
ing factories, coal fire power plant, boiler from indus-
tries), oil spillage (petrol, diesel, and their derivatives 
pollute seawater), acid rain pollution, and radioactive 
pollution (radioactive sediment, waters used in nuclear 
atomic plants, radioactive minerals exploitation, 
nuclear power plants) [65, 118, 119].

Water contamination is treated using a variety of 
physical and chemical approaches [75, 94]. Screening 
(radioactive sediment, waters used in nuclear atomic 
plants, radioactive mineral exploitation, nuclear power 
plants), grit chamber (remove sand and egg shells), 
floatation (oils, fats, grease, sediment solids), and 
sedimentation tank clarifier are examples of physi-
cal treatments (remove heavier sludge solids), whereas 
chemical treatments are as follows: neutralization (it 
adjusts pH for maintaining acidity of water), floccula-
tion, coagulation (solid removal, water clarification, 
lime softening by chemical flocculants and coagulants), 
oxidation (may reduce toxicity using biochemical oxy-
gen demand), ozonation (degradation of organic and 
inorganic pollutants), and chlorination [115, 120].

Drawbacks of physical and chemical methods
So many by-products are formed, chemical consump-
tion is so high, physicochemical monitoring of effluents, 
capital and energy costs are so high, high sludge produc-
tion and management of disposable, and techniques are 
expensive and toxic to the environment (Table 6).

Biological method used for water treatment
The biological method is the most common sanitizing 
method used for wastewater treatment, and it is also 
called secondary treatment, which involves the removal 
of organic matter from wastewater using bacteria and 
other microorganisms [137]. Wastewater typically con-
tains pathogenic organisms, heavy metals, toxins, and 
organic matter (garbage, waste, and partially digested 
foods) [138]. Biological methods can be classified into 
two categories: (i) aerobic—takes place in the presence of 
oxygen and (ii) anaerobic—takes place in the absence of 
oxygen. Aerobic biological treatment involves many pro-
cesses, i.e., the activated sludge process, trickling filters, 
aerated lagoons, and oxidation ponds. Due to its ease of 
use, rapidity, and efficiency, this process removes up to 
98% of organic contaminants. Anaerobic biological treat-
ment is used to treat high-strength wastewater (sludge 
degradation and stabilization). The process is slow as 
compared to aerobic; biogas production is one example 
of biodegradation of material where it overall converts 
up to 60% of organic solid mass (http://​neoak​ruthi.​com/​
blog/​biolo​gical-​treat​ment-​of-​waste​water.​html) [139].

Some of the examples of microorganisms that are 
involved in the treatment of wastewater using different 
processes are gram-negative bacteria (proteobacteria) 
for the elimination of organic elements and nutrients, 
Bacillus, Bacteroidetes, Acidobacteria, Chloroflexi, Tet-
rasphaera, Trichococcus, Rhodobacter, Pseudomonas, E. 
coli, Hyphomicrobium ascomycetes fungi, Nitrosomonas, 
etc. [137, 138, 140, 141]. For specific contaminant degra-
dation, predominantly well-defined microorganisms are 
used.

To improve the potency of proteins to overexpress 
the desired character for degradation by transforming 
microbes using genetic engineering approaches where 
they are transfected with genes that encode catabolic 
enzymes. Nowadays, genetically engineered microorgan-
isms (GEM) are the most feasible xenobiotic-degrading 
microorganisms (E. coli and Pseudomonas putida) in 
wastewater treatment, and with the help of GEM, we can 
improve the bioaugmentation process. These GEMs have 
been used to degrade hexane, oil spills, xylene, toluene, 
camphor, trichloroethylene, etc. because of their high 
degradative capacities for various pollutants in wastewa-
ter [131, 142]. Manipulation of the oil-degrading Pseu-
domonas bacterium with plasmids containing genes 

http://neoakruthi.com/blog/biological-treatment-of-wastewater.html
http://neoakruthi.com/blog/biological-treatment-of-wastewater.html
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Table 6  Advantages and limitation of physical and chemical methods in water, soil, and air pollution

Sr. no Pollution

1 Soil pollution
a) Physical method Advantages Disadvantages References

Soil washing • Cost-effective and time-saving
• Remove a range of contaminants, 
both organic and inorganic at the same time

• Require large area in the setup of system [121]

• Not work on very silty and clayey sites

• Wastewater from soil washing contains 
chemical additives, which may need special-
ized treatment which is generally difficult 
and expensive

Soil covering • Cost-effective and time-saving • Polluting ground water [122]

Soil replacement • Enhance load-bearing capacity
• Reduce settlement
• Improve stability of soft soils

• Costly method [121]

• Require proper compaction and compat-
ibility between the replacement material 
and the existing soil

Encapsulation • Minimum water ingress and leachate 
generation
• Avoid the escape of gases and vapors

• Long-term program of monitoring 
and maintenance

[123]

• Groundwater pollution

Nano-remediation • No groundwater is pumped out
• No soil transportation
• Better remediation
• Very small spaces in the subsurface

• Nanoparticles remain suspended in ground-
water

[121]

• Nanomaterials used for remediation 
do not move very far from their injection 
point

b) Chemical method
Vitrification • Significant reduction of waste • Costly method [124]

• Maintenance of poisonous gases is difficult• Significant advantage in terms of storage 
and disposal

• Treat various waste such as soil with buried 
waste, dried sludges, tailings, sediments, 
organic waste, chemical waste, radioactive 
waste, and mixture of hazardous waste

Chemical leaching • Heavy metals can be easily recovered • Significant amount of chelating agent 
is required

[121]

Chemical fixation • Conversion of pollutants into less toxic form 
and reduced their bioavailability, mobility, 
and ecological risk

• Influenced by environmental conditions [125]

• Material used are metallic oxides, clays, 
or biomaterial

• Cost-effective

Electrokinectics • Protecting natural ecosystem • Consumption of electric energy [126]

• Effective in the treatment of saturated 
and unsaturated soils

• Effects of electricity on soil characteristics

Chemical oxidation • Effective for the removable of polycyclic 
aromatic hydrocarbon

• By-products of chemical oxidation are 
of potential risk to the environment
• Further research is required to achieve maxi-
mum pollutant removal efficiency

[127]

• Effective for the removable of various recal-
citrant organic compounds

• Used in combination with other remediation 
methods

• Require less time

• Can be easily modified

2 Water pollution
a) Physical method
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Table 6  (continued)

Sr. no Pollution

Sewage dumping • Labor-saving • Putrid odor [128]

• Produce energy • Bacterial imbalance

• Fertilizer production • High installation costs

• Reduce public health risk • More use of power

• Maintenance costs

• Environment footprint• Environment friendly

• Massive land utilization

Mechanical garbage collector • Remove suspended solids up to 2–3 mg
• Available at low cost
• Easy to operate
• Simple construction
• Potable
• Work long time

• Human resources are not used [129]

• Cannot withstand higher loads
• It can clear drain width up to its width only
• Sound and vibration during process

Mechanical sewage collector • High efficiency of removable of suspended 
solids
• Easy to opeate
• Cost-effective

• Eutrophication [130]

Active pharmaceutical ingredient • Removing fats and oils from wastewater
• Treat wastewaters of refineries, petrochemi-
cals and chemical plants, and other industries

• Cannot produced large varieties of products [131]

Corrugated plate interceptor (CPI) • High efficiency of oil and fat removal
• Low-energy consumption
• Simple operation
• Using corrosion-resistant plates, acid, 
alkalinity
• Dense structure raises concerns about defor-
mation

• Large surface area is required
• Expensive oil/bottom scrapers required 
that are maintenance intensive
• Ineffective with small oil droplets or emulsi-
fied oil
• Require long retention time to achieve 
efficient separation

[132]

Dissolved air flotation • Small space requirement
• Recovered solids are 3–4 times thicker 
than gravity sedimentation
• Faster processing time

• Low initial cost but high operational cost [133]

b) Chemical method
Iron-enhanced sand filters • Treat dissolved phosphate

• Decrease eutrophication
• Require better analytical method for detec-
tion

[134]

Chlorination • Cost-effective
• Remove microorganism

• Chlorine can be toxic
• Cause irritation to the eyes, nasal passages, 
and respiratory system

[135]

Advanced oxidation process • Remove organic contaminants from water
• Not producing large sludge
• Rapid reaction rate with less retention rate
• Not require large area

• High operating and maintenance cost
• Complex chemistry to specific contaminants

[136]

Photochemical degradation • Degrade insecticides and pesticides • Need improvement to achieve complete 
mineralization

[166]

Ozonation • Good removable rate for all pesticides • Ozone has short life span
• It should be generated on-site, which 
increases the cost of treatment
• Free redicals causing side effects to human

[136]

Fenton • Remove organic contaminants • More toxic intermediate products
• Costly

[167]

Adsorption • Cost-effective
• Fast, flexible, and simple design

• Continuous removal of entrapped sludge [136]

3 Air pollution
a) Physical method
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encoding catabolic enzymes used in the degradation 
of aromatic compounds [143, 144]. For biodegradation 
of atrazine, metal removal, and direct blue dye in waste 
water, a genetically modified E. coli strain has been used 
[145, 146].

Genetically modified E. coli involved in wastewater treatment
Mercury (Hg) is the most dangerous heavy metal that 
can be released into the environment through industrial 
wastewater. Mercury can be removed from contaminated 
water, soil, or sediment by the GE E. coli strain JM109 
[43]. Mercury can be removed from a contaminated site 
using GE bacteria that possess the MerA gene [147, 148]. 
GE E. coli has been discovered to digest trichloroethylene 
after being transformed with a variety of phenol catabolic 
genes such as pheA, pheB, pheC, pheD, and pheR. Nickel 
(Ni) is perhaps the most tenacious toxin, and it can be 
extracted from water by the GE E. coli SE5000 strain 
[149]. In this way, GE microorganisms can help with the 
bioremediation of heavy metals from degraded sites.

Safety of using recombinant E. coli strain 
for treatment of pollutants
Artificial generation of pollutants takes place by vari-
ous by-products produced by the modern human world, 
which leads to toxicological impacts on nature. With 
growing awareness about the direct and indirect impacts 
of environmental pollution on ecosystems, efficient, cost-
effective, and environmentally safe methods are being 
developed for the treatment of pollutants. The rapid rise 
in the rate of industrialization and the manufacturing of 
harmful toxic products leads to a change in the homeo-
static balance of ecological biodiversity. Recombinant 

DNA technology emerged in 1972 and became the cut-
ting-edge technology in the modern world, leading to 
the mass production of human insulin, human growth 
hormones, interferon, and the hepatitis vaccine [150]. In 
medical sciences, delivery made by this technology has 
set mild stones to combat pollution. For this purpose, 
genetically modified organisms (GMO) produced by 
recombinant DNA technology are used as a promising 
option for the treatment of pollutants, and many reports 
have also been published in this context [151, 152]. There 
are a variety of pollutants that are increasing at an alarm-
ing rate in the environment and need to be monitored.

The common pollutants that are to be taken into con-
sideration are heavy metals, high density petroleum 
hydrocarbons (mercury, lead, arsenic, cadmium, etc.), 
polymers, chlorinated hydrocarbons, pesticides, insec-
ticides (polycarbonates, polyethylene, polyurethane, 
polypropylene, etc.), explosives, detergents (GTN, TNT, 
and RDX), etc. [153, 154]. The combination of biotech-
nology and recombinant DNA technology is improving 
pollutant-degrading microbes through genetic modifica-
tions and strain improvement of specific metabolic and 
regulatory genes that are crucial in biodegradation [30]. 
Chakrabarty [155] established the bar by patenting petro-
leum oil pollution bioremediation, which was the first 
step towards using recombinant DNA technology for 
pollution mitigation. The most important and prominent 
tools for recombinant DNA technology are GMOs, which 
aid in the bioremediation of pollutants. Although they 
are potential deliverables, they need statutory clearance 
to be used in an open environment in many countries. 
So various regulatory guidelines are framed in different 
countries for their safe use.

Table 6  (continued)

Sr. no Pollution

Scrubbers • Small space requirements
• No secondary dust source
• Handles high temperature and humidity gas 
streams

• Corrosion problems
• High-power requirements
• Water-disposal problems

[123]

Electrostatic precipitators • Reduce mercury emission
• Home air cleaners
• Incinerators
• Used in coal-burning plants

• Less effective in removing very small parti-
cles and gaseous pollutants
• High setup cost

[168]

Baghouse filter • Gentle cleaning method extends filter bag 
lifespan
• Low operational cost

• Require more space
• Not efficient as pulse-jet system

[96]

b) Chemical method
Flue gas desulfurization • Simple process

• No sewage and acid treatment
• Low-energy consumptions
• Purified flue gas does not need secondary 
heating

• Low sulfur removal efficiency
• Large investment
• Large equipment
• Large floor area
• High technical requirements for operation

[169]

Carbon sequestration • Reduces the emission of greenhouse gases • Costly process [120]
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The recombinant E. coli K-12 strain is extensively 
used for pollution control as it does not colonize the 
human gut and is non-pathogenic [156]. Further, it 
has a simple expression system as compared to other 
higher-level organisms and a large quantity of well-
characterized genomic databases. Although certain 
scientific considerations are to be taken into account 
while assessing the environmental use of this recom-
binant microorganism by selecting appropriate safety 
measures, this may pose some negative impact on the 
environment [157]. The bioremediation process is 
monitored indirectly by measuring the polluted site’s 
redox potential as well as temperature, pH, electron 
acceptor and donor concentrations, oxygen content, 
and concentrations of breakdown products (e.g., car-
bon dioxide), and petroleum-contaminated environ-
ments are analyzed by bacterial biosensors [158, 159]. 
In addition, microbial biosensors are increasingly 
being used to detect contaminants in systems based on 
reporter genes.

The specific metals in cellular environments are 
responsible for the expression of resistance genes, and 
this specificity of tight regulation is exploited in such 
biosensors [154]. The promoters and regulatory genes 
present in resistance operons are being used to con-
struct metal-specific biosensors (promoter-reporter 
gene fusions) [160]. In addition to chemical analysis, 
metal-specific biosensors can be used:

1.	 To regulate pollutant concentration
2.	 Bioavailable metal concentration in the samples [110]

Thus, currently existing risk assessment and safety 
methods are being used to characterize the conse-
quences of human exposure to such E. coli strains. 
Further, key difficulty lies in the assessment of inter-
actions of the microorganism with the existing ecosys-
tem. For example, an introduced E. coli strain may pass 
genetic material to other microbes, altering the envi-
ronment and resulting in secondary impacts. Thus, 
two important areas of investigation related to estab-
lishment and proliferation are as follows:

(i) Fate of the recombinant E. coli strain and envi-
ronmental transfer.
(ii) Interaction with the ecosystem.

This knowledge of recombinant E. coli transport and 
its fate (or survival) is useful for assessing potential 
exposures of nontarget organisms or nontarget areas 
and rendering it safe for remediation of pollutants 
[161, 162].

Policy regarding regulation of genetically modified 
microorganisms
The recent advancements in genetic manipulation offer 
vast potential and are being utilized in various innova-
tive experiments and applications. These progressions 
have raised apprehensions among researchers in the bio-
logical sciences and other related fields regarding the safe 
conduct of research in this domain. Genetically modified 
organisms (GMOs) and their products are regulated in 
India under the “Rules for the manufacture, use, import, 
export & storage of hazardous microorganisms, geneti-
cally engineered organisms or cells, 1989” (referred to as 
Rules, 1989) notified under the Environment (Protection) 
Act, 1986 [163]. The Ministry of Environment, Forest, 
and Climate Change, the Department of Biotechnology, 
and state governments enforce these rules through six 
competent authorities. Six competent authorities and 
their composition have been notified under these rules 
that include the following: rDNA Advisory Commit-
tee (RDAC), Institutional Biosafety Committee (IBSC), 
Review Committee on Genetic Manipulation (RCGM), 
Genetic Engineering Appraisal Committee (GEAC), 
State Biotechnology Coordination committee (SBCC), 
and District Level Committee (DLC). The Recombinant 
DNA Advisory Committee (RDAC) has been established 
by the department for this specific reason. A publication 
outlining the Recombinant DNA Safety Guidelines has 
been released, based on the latest scientific knowledge, 
to regulate the use of this technique in research, produc-
tion, and various applications. In 2014, the Department 
of Biotechnology (DBT) established a specialized task 
force focused on “Genome Engineering Technologies and 
their Applications.”

The Coordinated Framework for Regulation of Biotech-
nology was issued in 1986 by the Office of Science and 
Technology Policy (OSTP) in United States of America 
(USA). The framework detailed the allocation of regula-
tory duties among the many authorities that deal with 
pesticide, food, and agricultural goods. Therefore, in 
compliance with the framework, the US Environmental 
Protection Agency (US EPA) regulates microorganisms 
and other genetically engineered constructs intended for 
pesticidal purposes and subject to the Federal Insecticide 
Fungicide and Rodenticide Act (FIFRA) and the Federal 
Food Drug and Cosmetic Act (FFDCA); USDA APHIS 
regulates microbes that are plant pests under the Plant 
Protection Act (PPA) and the National Environmental 
Policy Act (NEPA). Additionally, certain genetically modi-
fied microbes employed as biofertilizers, bioremedia-
tion agents, and to produce other industrial compounds 
including biofuels under the Toxic Substances Control Act 
(TSCA) are regulated by the US EPA (EPA 1999) [164].
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The European Union (EU) has put in place a number 
of legal tools to guarantee the safety of goods made with 
or containing GMMs. A product must undergo a sci-
entific risk assessment before it is allowed to be sold. A 
guidebook for the risk evaluation of genetically modified 
organisms (GMOs) in food or feed products has been 
released by the European Food Safety Authority’s (EFSA) 
GMO Panel (EFSA, 2011) [165]. The evaluation is divided 
into two sections: the GMOs characterization and any 
potential impact the modification may have on the prod-
uct’s overall safety.

Conclusion
Genetic engineering methods have provided enough 
opportunities to remove pollutants and toxins from the 
environment. Comparing this technology with conven-
tional technologies, it is less expensive and more ecologi-
cally friendly. It is important to consider environmental 
factors that may influence the bioremediation of con-
taminated sites. Microorganisms have an optimal envi-
ronment for maximum performance as well as a limit of 
adaptation to certain environmental conditions. A range 
of biochemical, microbiological, ecological, and genetic 
factors influence the rate of bioprocessing and biodegra-
dation of contaminants by genetically engineered bacte-
ria for environmental cleanup. Scientists are continually 
uncovering new unique genes that can be used to gener-
ate new constructs and eventually a new strain that aids 
in the manufacture of derivative routes for new synthetic 
compounds, as well as the introduction of biodegrada-
tion capabilities in a variety of locations. Even with their 
great potential and encouraging results in the treatment 
of pollutants by recombinant host bacteria, recombinant 
bacteria still face a number of difficulties in the process 
of treating pollutants. In a complex environment with 
several substrates and numerous microbial interactions, 
only a small number of modified bacteria are involved in 
the treatment and removal of toxins. The greatest way to 
increase biodegradation variety is to use a plasmid with 
multiple operons rather than multi-plasmids with favora-
ble qualities as plasmids are not only compatible but also 
incompatible. Protoplast fusion technique has demon-
strated promising outcomes in the breeding of biodeg-
radation-engineered bacteria, in addition to plasmids, 
which is a good thing. Recombinant bacterial strains 
were produced using the protoplast fusion process; how-
ever, the strains also contained genes that were unnec-
essary or harmful to breakdown. It is also important to 
follow the correct regulatory procedures for the safe con-
tainment and use of GMOs in bioremediation processes.

The subsequent stages of bioremediation research 
involve discovering and comparing gene and protein 
sequences that are efficient at eliminating contaminants, 

even though genomics, metabolomics, and proteomics in 
bioremediation help explore potential solutions to par-
ticular pollutants. GMOs have the ability to clean up a 
variety of contaminated soil and waste effluents. Utilizing 
bioremediation in tandem with other physical and chem-
ical techniques can offer an all-encompassing strategy for 
eliminating pollutants from the surroundings and has the 
potential to overcome current challenges. It seems to be 
a long-term treatment; thus, more study in this field is 
required.
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