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Abstract 

Textile industries discharge significant amounts of toxic chemicals, including residual dyes and various other xenobi‑
otic compounds, into the environment, leading to adverse effects such as toxicity, mutagenicity, and carcinogenicity. 
While physico-chemical methods are commonly used for dye removal, bioremediation with microorganisms offers 
a greener and more eco-friendly alternative. Many microorganisms, including fungi, bacteria, and microalgae, pos‑
sess the ability to degrade textile dyes through their metabolic pathways. However, their biodegradation potential 
is often hindered by factors such as cytotoxic effects of dyes, unfavorable environmental conditions, dye composi‑
tion, concentration, and microbial types. In recent years, different strains of fungi, bacteria, and microalgae have been 
employed individually or in consortia for textile dye biodegradation. Nevertheless, there is a notable gap in research 
regarding the use of “bacterial–microalgal consortia” as a novel approach for efficient textile dye detoxification. This 
review aims to provide updated insights into the symbiotic interactions between bacteria and microalgae in degrad‑
ing textile dyes. It discusses various technological, resource recovery, and economic challenges, as well as future pros‑
pects of this approach for textile wastewater treatment, emphasizing its potential for environmental and economic 
benefits.
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Graphical Abstract

Introduction
The textile industry plays a vital role in the global econ-
omy, contributing to sustainable development and the 
prosperity of nations. It encompasses the creation, 
manufacturing, and distribution of yarn, fabric, and 
clothing items [1]. Within various technological pro-
cesses employed by the industry, dyes form a crucial 
component. These dyes, which belong to a diverse and 
heterogeneous group of chemicals, include azo dyes, 
triarylmethanes, phenothiazines, and anthraquinones, 
among others, and are extensively used in textile process-
ing [2]. Unfortunately, during the dyeing process, a sig-
nificant portion of these colors, estimated to be around 
10–15%, is discharged into the environment as effluent, 
posing a serious risk to human health due to presence 
of carcinogenic toxic heavy metals and phenolic deriva-
tives [3]. Hence, the presence of these toxic compounds 

in the environment is a major concern and need an effec-
tive removal plan to safeguard the ecosystem. Various 
methods such as adsorption, chemical processing, ion-
pair extraction, coagulation, and flocculation are utilized 
for decolorizing dye and treating textile effluents [4]. 
Although these techniques are efficient, they can also lead 
to secondary environmental issues in the future and are 
expensive [5]. On the other hand, the biological method 
of dye degradation, involving microbes and enzymes, has 
been effective and has fewer limitations [6]. However, 
there are certain limitations, such as the concentration 
of pollutants, their structural complexity, physicochemi-
cal behavior, and the type of microorganism when using a 
single microbial culture for effluent remediation [7]. This 
can be overcome by using a mixotropic culture, i.e., bac-
terial–microalgal consortia (BMC), for bioremediation 
of textile effluent. The main advantages of using these 
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consortia are a fast rate of remediation, metabolic flex-
ibility, and protection of cells from damage [8]. Wu et al. 
[9] used BMC for the bioremediation of textile effluent. 
Thus, in this review, authors provided comprehensive 
information regarding the types and compositions of tex-
tile effluents and advanced and conventional methods for 
treating textile effluent. The role of BMC in bioremedia-
tion and different aspects of interaction among bacteria 
and microalgae are discussed, emphasizing the effective-
ness of BMC in textile effluent remediation. Additionally, 
the review delves into the techno-economic and environ-
mental implications of implementing BMC for treating 
textile effluents, exploring the associated challenges and 
future prospects based on existing literature.

Textile effluent treatment strategies
The elevated levels of hazardous chemicals pose obsta-
cles to treatment procedures, complicating the pro-
cess. Moreover, the presence of dyes obstructs sunlight 
and suppresses the growth of aquatic organisms such 
as plants, phytoplankton, and flora [10]. To address 
the removal of contaminants from textile wastewater, 
various treatment methodologies have been devised, 

encompassing physical, chemical, biological, and hybrid 
approaches (Fig. 1).

Various physical methods, including sedimenta-
tion, adsorption, coagulation, and filtration, have been 
employed to remove suspended soil particles, lint pieces, 
and fibers from textile effluents [11]. Nano-filtration 
technology, coupled with a variety of coagulating and 
flocculating agents such as inorganic salts and organic 
substances like Aloe vera and Cactus, has emerged as 
effective for removing colorful impurities from effluents 
[12]. Madhav et  al. [13] demonstrated the efficacy of 
natural adsorbents derived from plant biomass or bio-
mass byproducts in treating textile effluents. However, 
a significant drawback of this technique is its low yield, 
efficiency, and generation of multiple by-products in 
the sludge [14, 15]. Chemical methods primarily involve 
oxidation, ozonation, and electrolysis. Zhang et  al. [16] 
recently reported on the effectiveness of advanced oxida-
tion techniques in treating textile effluents. Hutagalung 
et  al. [17] corroborated the efficacy of these methods, 
noting a 51.7% reduction in COD through oxidative pro-
cedures [18]. Sala and Gutiérrez-Bouzán [19] utilized 
electrochemical methods for effluent treatment, facilitat-
ing the discoloration of effluents by degrading dyes. In 

Fig. 1  Different physical, chemical, and biological methods of effluent treatment
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biological treatment, microorganisms such as bacteria 
(bioremediation), fungi (mycoremediation), and algae 
(phycoremediation), along with their enzymes, play a 
crucial role in effluent treatment [20]. Bacteria decom-
pose organic matter into less toxic or useful by-products, 
which subsequently settle after sedimentation [21]. Bac-
teria were most effectively used for degradation of azo 
dyes with higher rate of remediation and less rate of for-
mation of by-products while fungi degrade the non-solu-
ble dyes by oxidation [22]. Microbial enzymes were also 
reported to degrade dyes and effluents by oxidation. Lac-
cases, lignin peroxidase, lipases, hydrolases, protease, etc. 
are mainly used for this purpose [23]. The concentration 
of other constituents was also found to be higher in tex-
tile effluent as detailed in Table 1.

Recent studies have identified various microorgan-
isms capable of degrading aromatic compounds present 
in industrial effluents [29]. While biological degradation 
methods are highly effective, they have drawbacks such 
as the specificity of a single microorganism toward a sub-
strate and partial degradation of impurities [30]. To over-
come these limitations, genetically modified microbes or 
microbial consortia have been developed for the degra-
dation of toxic and hazardous industrial effluents [31]. 
These advanced technologies have proven to be more 
effective, eco-friendly, faster, and cost-effective compared 
to conventional methods [32].

Bacterial–microalgal consortia (BMC) for the degradation 
of textile effluent
Synthetic textile dyes have become an unavoidable com-
ponent of several industries. According to a recent study 
by Morsy et  al. [33], annually, 700,000 tons of diverse 
groups of dyes are produced, which are major contribu-
tors to various environmental pollutions and cause irre-
versible damage to ecosystems. While conventional 

processes degrade dyes efficiently (coagulation-floccu-
lation, adsorption, ion exchange etc.), they also produce 
toxic intermediates that further harm the environment 
[26]. Therefore, the scientific community highly recom-
mends cheap and eco-friendly biological methods uti-
lizing microbes, plants, biocatalysts, and consortia as 
alternative solutions [8]. Bacterial–microalgal consortia 
(BMC) have been used for the treatment of industrial 
effluent for decades and have been found to be more 
innovative and less time-consuming than engineered 
systems. BMC is a symbiotic association between bacte-
ria and algae in which both positively affect each other’s 
growth [34]. In these symbioses, algae help in the sorp-
tion of contaminants due to their large surface area and 
act as hosts to create favorable conditions for bacteria to 
survive in harsh environments. On the other hand, bac-
teria promote the growth of algae by degrading toxic pol-
lutants and releasing phytohormones [35]. During such 
interactions, molecular signals and genetic information 
were also exchanged by both the organisms that facilitate 
genetic transformations [36]. Furthermore, before using 
such consortia in reactor system, selection of strains 
is necessary step and must be compatible towards each 
other w.r.t. size, growth rate, and genetic stability [37, 38].

Community structure of bacterial–microalgal 
consortia
The community structure of BMCs is dynamic and 
highly dependent on the environmental conditions in 
which they grow [39]. BMCs are typically composed of 
a few dominant algal species and a diverse array of bac-
terial taxa. The interactions between the different mem-
bers of the BMC community are complex and involve 
a range of physical, chemical, and biological processes 
[34]. Understanding the community structure and 
dynamics of BMCs is important for the development 
of sustainable and efficient biotechnological applica-
tions for the treatment of textile effluent. Studies have 
shown that the composition of BMCs can be influenced 
by a range of factors, including nutrient availability, 
temperature, light intensity, and pH [40]. Importance 
of communication and signaling between the different 
members of the BMC community to sense members 
and their density for adjusting their behavior accord-
ingly has also been studied by Venkata Mohan et  al. 
[41]. An important aspect of the community structure 
of BMCs is the potential for functional redundancy that 
can provide a buffer against environmental fluctuations 
and disturbances. For example, if one bacterial species 
is unable to metabolize a particular nutrient, another 
species with similar metabolic capabilities may be able 
to fill the niche [42]. Overall, the community structure 
of BMCs is a complex and fascinating area of study that 

Table 1  Composition of different constituents of textile effluents

Sr. No Constituent of effluent Range Reference

1. Color Dark brown 
to charcoal black

[24]

2. Temperature (°C) 20–60 [25]

3. pH 4–10 [26]

4. TDS (mg/L) 1800–12,000 [24]

5. TSS (mg/L) 15–8000 [25]

6. Conductivity (µS/cm) 1000 [27]

7. Chlorines (mg/L) 200–6000 [24]

8. Heavy metals (mg/L) 2–15 [28]

9. BOD (mg/L) 80–6000 [26]

10. COD (mg/L) 150–12,000

11. Surfactants 20–100 [18]
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has important implications for biotechnology, envi-
ronmental management, and our understanding of 
microbial ecology require further research for better 
management of textile effluent.

In this mode of construction, the bacterial and micro-
algal species are grown together in the same culture 
medium to facilitate their interactions. Mubashar et  al. 
[28] reported Enterobacter sp. MN17-inoculated with C. 
vulgaris to treat wastewater resulted into removal of 79% 
(Cr), 93% (Cd), 72% (Cu), and 79% (Pb). The co-cultiva-
tion of microalgae Chlorella sorokiniana strain DBWC2 
and Chlorella sp. strain DBWC7 and bacteria Klebsiella 
pneumoniae strain ORWB1 and Acinetobacter cal-
coaceticus strain ORWB3 has been reported to produce 
biomass feedstock with simultaneous wastewater reme-
diation [43]. The bacterial species enhanced the growth 
of the microalga by providing essential nutrients, result-
ing in efficient removal of nitrogen and phosphorus from 
the synthetic wastewater. Table  2 summarizes various 
BMCs with their efficiencies for the treatment of various 
wastewaters.

The sequential inoculation of bacterial and micro-
algal species into the culture medium facilitates spe-
cific interactions between them. This approach enables 
direct interaction between the microalgal and bacterial 
cells, fostering a more symbiotic relationship between 
the two species [39]. Genetically engineered BMCs are 
established to promote specific interactions, enhancing 
the development of beneficial strains and facilitating the 
sustainable production of commercial metabolites [32, 
36]. BMCs also contribute to the formation of biofilms, 
aiding in the attachment of microalgal and bacterial cells 
to surfaces, thereby creating a complex ecosystem. This 
strategy can enhance the stability and productivity of the 

consortium, particularly in wastewater treatment appli-
cations [51].

Modes of interaction in BMCs
BMCs can interact with each other in different ways, 
including synergistic, commensal, and mutualistic inter-
actions (Fig. 2). Here is a brief overview of each mode of 
interaction.

Synergistic interaction
In this form of interaction, the bacterial and microalgal 
species within the consortium collaborate to improve its 
overall performance. Bacterial members may degrade 
toxic substances, providing essential nutrients or growth 
factors to the microalgae, while the microalgae may sup-
ply organic carbon for bacterial growth [52]. For instance, 
a Chlorella-Exiguobacterium and Chlorella-Exiguobacte-
rium/Bacillus licheniformis consortium demonstrated a 
synergistic reduction in total nitrogen, total phosphorus, 
ammonia, and chemical oxygen demand by 78.3%, 87.2%, 
84.4%, and 86.3%, respectively, during piggery wastewa-
ter treatment [53]. Through this synergy, bacterial species 
supported microalgal growth with essential nutrients, 
while microalgae supplied organic carbon for bacterial 
proliferation, resulting in the efficient removal of organic 
pollutants from the wastewater [52].

Commensal interaction
In a commensal interaction, one species benefits from the 
presence of another species without causing any harm or 
providing any benefit in return. For instance, certain bac-
terial species in the consortium may utilize the organic 
carbon excreted by the microalgae for their growth with-
out offering any benefit in return [54]. Research indicates 

Table 2  BMCs and their efficiencies in various wastewater treatments

Bacterial–microalgal consortium Wastewater Efficiency Reference

Chlorella vulgaris and Staphylococcus species Real textile wastewater Nitrogen-58.57%, phosphate-86.42%, and COD-91.5% [6]

Chlorella vulgaris and Enterobacter sp. MN17 Textile wastewater Reduction in chromium (79%), cadmium (93%), copper 
(72%), lead (79%), COD (74%), and color removal (70%)

[28]

C. sorokiniana DBWC2, Chlorella sp. DBWC7 and K. pneu-
moniae ORWB1, Acinetobacter calcoaceticus ORWB3

Artificial wastewater Total biomass titer (93%), nitrate removal (82%), COD 
(90%) in both artificial wastewater and raw dairy 
wastewater

[43]

Algal–bacterial consortium Wastewater treatment Ammonium removal-100%, COD-90% [44]

C. vulgaris and activated sludge Synthetic wastewater Nitrogen-89.4%, phosphorous-91.4%, and COD-83.6% [45]

Scenedesmus sp. and bacteria group Municipal wastewater Nitrogen-95.7%, phosphate-98.1%, and COD-92.3% [46]

Picochlorumsp and Chitrinomycetes, Pseudomonas sp. Saline wastewater Carbon, nitrogen, and phosphorus-95% [47]

Chlorella, Chlamydomonas, Stichococcus, and bacteria Swine manure Phosphorous-90% [48]

C. sorokiniana and aerobic sludge Swine wastewater Nitrogen-82.7%, phosphate-58%, and COD-62.3% [49]

C. sorokiniana and Azospirillum brasilense Ammonia wastewater Nitrogen-100% [37]

Chlorella vulgaris and Lemnamin uscula Recalcitrant effluent Nitrogen-71.6%, phosphate-28%, and COD-61% [50]



Page 6 of 21Rathour et al. Biotechnology for the Environment             (2024) 1:6 

that the presence of the bacteria Auxenochlorella pro-
tothecoides and the microalga Chlorella sorokiniana in 
wastewater did not affect the growth of the algae, illus-
trating the occurrence of commensalism [55].

Mutualistic interaction
In a mutualistic interaction, both bacterial and microal-
gal species in the consortium benefit from each other’s 
presence. For instance, when Ostreococcus tauri and 
Dinoroseobacter shibae were co-cultured, it provided 
both species with the B vitamins they required, leading 
to a mutualistic association [56]. Similarly, Palacios et al. 
[57] demonstrated a symbiotic relationship for mutual 
growth, where Azospirillum brasilense produced indole 
acetic acid and Chlorella sorokiniana produced thiamine, 
with both species consuming tryptophan for growth.

Functional modes of BMCs
BMCs in environment maintenance
Bacterial–microalgal consortia (BMC) have emerged as 
key players in preserving environmental health, nota-
bly in treating textile and other effluents [58]. Utiliz-
ing industrial flue gas and wastewater for cultivating 

microalgae–bacteria consortium enables the utilization 
of nutrients and organic matter, thereby aiding in CO2 
mitigation [59]. Additionally, BMCs prove valuable in 
remediating persistent organic pollutants from water 
streams and industrial effluents through mechanisms 
such as biosorption, bioaccumulation, and biodegrada-
tion [58]. Researchers have explored the use of microal-
gae in consortia systems alongside other microorganisms, 
predominantly bacteria, to enhance their efficiency in 
pollutant removal [60]. Microalgae perform photosyn-
thesis, producing oxygen that supports bacterial popu-
lations, while also assimilating contaminated nutrients 
throughout their growth cycle [61]. A synthetic BMC was 
developed for crude oil degradation, comprising Sphingo-
monas GY2B, Burkholderia cepacia GS3C, Pseudomonas 
GP3A, Pandoraea pnomenusa GP3B, and an oil-tolerant 
microalga, Scenedesmus obliquus GH2 [62].

Nutrient exchange in BMC
Bacterial–microalgal consortia plays a crucial role in 
nutrient exchange within aquatic ecosystems, particularly 
in environments where nutrients are scarce. These con-
sortia facilitate the exchange of metabolites, nutrients, 

Fig. 2  Mode of interaction between algae and bacteria in BMC
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vitamins, growth-promoting factors, phytohormones, 
carbon uptake, oxygen generation, and removal, thereby 
enhancing biomass productivity and quality [63]. For 
instance, the freshwater green alga Lobomonas ros-
trata, which requires organic micronutrients for growth, 
obtains vitamin B12 from the bacterium Mesorhizobium 
loti, while providing photosynthate to the bacteria in 
return [64]. Additionally, bacteria may produce spe-
cific antibiotics to either lyse algal cells (parasitism, for 
controlling algal blooms) or protect algae from other 
microorganisms (mutualism/commensalism) [65]. Acyl 
homoserine lactones (AHLs), signaling molecules pro-
duced by bacteria, facilitate biofilm formation between 
bacterial and algal cells, potentially aiding in biomass 
harvesting and wastewater treatment [66].

Signal exchange in BMCs
Signal exchange plays a pivotal role in the functioning of 
bacterial–microalgal consortia (BMCs) in the treatment 
of textile effluents. Bacteria and microalgae communicate 
through the exchange of signaling molecules, enabling 
them to coordinate their actions and respond to envi-
ronmental changes [67]. For instance, symbiotic bacteria 
from the Roseobacter group release quorum sensing sig-
nals, such as rosmarinic acid, which facilitate the coloni-
zation of Asterionellopsis glacialis and enhance biofilm 
formation. This enhances the bacteria’s ability to attach 
to diatom microalgae [68]. The interactions between bac-
teria and phytoplankton are intricate, affecting various 
processes that can either positively or negatively impact 
BMC productivity [69]. Research has shown that quorum 

sensing molecules isolated from microbial consortia in 
wastewater can boost lipid synthesis in Chlorophyta sp. 
microalgae by 86%, albeit with a slight decrease in algal 
biomass [70]. In another study, Chlorococcum sorokini-
ana microalgae cultivated in a photo-bioreactor with 
bacterial quorum sensing molecules extracted from 
anaerobic bacterial sludge exhibited a 2.25-fold increase 
in algal biomass, along with elevated lipid and protein 
content [66].

Technologies for BMC community profiling
Precise identification and characterization of microalgae 
and bacteria within a consortium are essential for opti-
mizing these communities and harnessing their potential 
applications. Researchers employ various techniques, 
including physical, biochemical, and molecular meth-
ods, to identify bacterial–microalgal consortia [40]. As 
technology advances, novel approaches have emerged 
to study microorganism interactions within consortia as 
shown in Fig. 3, aiming to improve wastewater treatment 
efficiency and facilitate biotechnological applications 
[36].

Microscopy
Microscopic observation is a fundamental method for 
studying the morphology, organization, and function of 
microalgae and bacteria in the phycosphere. Epifluores-
cence microscopy is commonly utilized to examine bac-
teria and microalgae, which are typically fixed with 2% 
formaldehyde and stained with 4’,6-diamidino-2-phe-
nylindole (DAPI) before observation under an inverted 

Fig. 3  BMC profiling techniques
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optical microscope [71]. Laser confocal fluorescence 
microscopy is another valuable technique used to detect 
the accumulation and utilization of fluorescent organic 
compounds, such as BaP, in algal cells [72]. Scanning 
electron microscopy (SEM) analysis of bacterial–micro-
algal consortia involves fixing the sample in glutaralde-
hyde for 24 h, dehydration in a series of alcohol solutions 
for 10 min, and mounting onto a support material coated 
with gold particles for SEM analysis [73]. Similarly, Bis-
was et al. [74] analyzed bacterial–microalgal consortia by 
preparing a thin smear of the consortium, air-drying it, 
coating it with an 8-nm-thick layer of gold in a sputter 
coater, and observing it using light microscopy, SEM, and 
field emission SEM. Confocal laser scanning microscopy 
has been employed to identify the presence of microal-
gae in natural consortia found in municipal wastewaters, 
enabling visualization of the three-dimensional micro-
structure of bacterial–microalgal consortia [75].

Microfluidics
Microfluidic devices have emerged as valuable tools 
for creating controlled environments conducive to the 
growth of bacterial biofilms, enabling real-time obser-
vation and measurement of their properties [76]. These 
devices facilitate the analysis of complex environmental 
conditions, such as concentration gradients, by allowing 
researchers to observe the responses of individual cells 
through live-cell imaging [77]. In a recent advancement, a 
microfluidic photo-bioreactor was successfully developed 
and tested for the photoautotrophic cultivation of C. 
sorokiniana [78]. Additionally, Syed et al. [79] designed a 
low-cost spiral micro channel capable of efficiently sepa-
rating and purifying Tetraselmis suecica from invasive 
diatoms, such as Phaeodactylum tricornutum, at optimal 
flow rates. This method achieved up to 95% separation of 
P. tricornutum cells from the culture without impacting 
cell viability [80].

Genomics
One of the key advantages of genomics lies in its capac-
ity to analyze the genetic sequences and gene expression 
patterns of individual organisms, revealing pertinent 
biological functions [36]. Polymerase chain reaction-
denaturing gradient gel electrophoresis (PCR-DGGE) is 
a molecular technique commonly paired with 16S rDNA 
sequencing to explore microbial diversity in environmen-
tal samples [81]. Cho et al. [75] employed DGGE in con-
junction with pyrosequencing to assess bacterial diversity 
associated with microalgae in untreated municipal waste-
water, identifying prevalent genera such as Chlorella sp., 
Acutodesmus sp., and Scenedesmus sp. [48]. Quantita-
tive polymerase chain reaction (qPCR) utilizing specific 
markers like rRNA gene and plastid DNA is employed 

to examine bacteria and microalgae in consortia under 
specific conditions [54]. Pyro-tag sequencing is another 
genomic technique used to analyze the BMC commu-
nity in fixed-bed photo-bioreactors [47]. Additionally, 
quantitative PCR and metagenomic analyses have shown 
that microalgae stimulate bacterial growth, establishing 
a symbiotic relationship with C. vulgaris compared to 
indigenous bacteria [82]. Fluorescence in situ hybridiza-
tion (FISH) is employed for identifying and quantifying 
specific microbial populations by hybridizing fluores-
cently labeled oligonucleotide probes to complementary 
sequences in target microbial cells [36, 83]. Next-genera-
tion sequencing (NGS) provides a comprehensive under-
standing of genetic stability by identifying interspecies 
variants in consortia exposed to extreme conditions. 
The genomic features of these bacterial cells suggest the 
critical role of heterotrophy in this bacterial phylum. 
Furthermore, fluorescence-activated cell sorting (FACS) 
in enrichment cultures, combined with single-amplified 
genomics/amplicon sequencing and fluorescence micros-
copy, aids in identifying various metabolic capabilities 
and interactions of BMC members [84].

Transcriptomics
Analyzing the transcriptome sequence provides a 
detailed insight into the physiological processes occur-
ring in individual microorganisms or consortia compris-
ing bacteria and microalgae [52]. For instance, during 
consortia development, the diatom Thalassiosira pseudo-
nana was found to produce a protein that transports and 
catabolizes 2,3-dihydroxypropane-1-sulfonate (DHPS), 
which serves as a food source for bacteria in the con-
sortium [85]. Co-culturing T. pseudonana with DHPS 
enables Ruegeria pomeroyi to utilize DHPS as a carbon 
source, resulting in the transcriptional expression of 
its metabolism and up-regulation of genes involved in 
C2-sulfonate N-acetyltaurine transport and catabolism 
[86]. Although green algae typically cannot synthesize 
vitamin B12, they can utilize a cobalamin-independent 
pathway to produce methionine necessary for protein 
synthesis, thus bypassing the need for vitamin B12 [64]. 
These approaches are crucial for obtaining a comprehen-
sive understanding of the interactions between differ-
ent organisms within a consortium and their roles in the 
ecosystem.

Proteomics
Proteomics offers valuable insights into the metabolic 
and signaling pathways involved in the interactions 
between organisms within a consortium [87]. By identi-
fying bioactive compounds and growth factors influenc-
ing BMC survival, proteomics guides the cultivation of 
the consortium [88]. For instance, proteomics analysis 
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elucidated molecular mechanisms between Chlorella vul-
garis and Bacillus licheniformis supplemented with vita-
min B12, revealing significant enrichment in pathways 
like carbon fixation, amino acid metabolism, and nitro-
gen metabolism [64]. In the presence of vitamin B12, 
upregulation of proteins activated the quorum-sensing 
pathway, enhancing the algae–bacteria interaction [89]. 
Moreover, interactions between microalgae and associ-
ated microbiomes enable metabolic adaptation, allowing 
bacteria to metabolize nutrients from injured or dead 
algal cells, sustaining the microbial community [90].

Metabolomics
Comprehending the metabolic interactions within BMCs 
and their responses to environmental stimuli is pivotal 
for their engineering, as these interactions are modu-
lated by environmental changes, genetic modifications, 
and organismal physiology [37, 86]. Recent investiga-
tions have focused on metabolic responses in microal-
gae, particularly under nutrient-deprived conditions. 
For instance, Chen et  al. [91] observed changes in the 
metabolome profile of co-cultures of C. sorokiniana and 
Pseudomonas sp. compared to individual microorgan-
isms. The metabolomics analysis, employing orthogonal 
partial least squares discriminate analysis (OPLS-DA), 
revealed an augmentation of secondary metabolites 
with high economic value in both C. sorokiniana and 
the consortia developed with Pseudomonas sp. [57, 92]. 
Integrating multiple omics techniques, including genom-
ics, transcriptomics, proteomics, and metabolomics, is 
imperative for a comprehensive understanding of micro-
algae-bacteria interactions within a consortium.

BMC interactions in textile effluent treatment
In BMCs, bacteria and algae play significant roles in shap-
ing physiology, environmental chemistry, and microbial 
diversity. The interaction between bacteria and microal-
gae is both mutualistic and competitive [51]. In a study 
by Mandal et  al. [93], it was observed that the microal-
gae Amphidinium carterae produce extracellular poly-
meric compounds that enhance the growth of B. pumilus. 
Similarly, bacteria produce growth-promoting elements 
such as vitamins and siderophores, which facilitate algal 
growth, particularly in iron-deficient environments. Kim 
et  al. [94] reported the role of rhizobium in promoting 
algal growth in nitrogen-fixation-deficient algae. Bacteria 
and algae degrade organic matter through mixotrophic 
and heterotrophic metabolism without significantly alter-
ing the system’s pH [95]. The mucus produced by some 
blue-green algae creates a specialized microenvironment 
for specific bacteria. In competitive relationships, both 
partners can have adverse effects on each other, with 
metabolites excreted by microalgae having bactericidal 

effects and vice versa [51, 96]. Reports indicate the inhi-
bition of bacteria such as B. subtilis, E.  coli, and P. aer-
uginosa by microalgae. Changes in dissolved oxygen, 
temperature, and pH during photosynthesis can also have 
harmful effects on bacteria [95]. Figure 4 is depicting the 
exchange of various nutrients and metabolites among 
bacteria and microalgae during their consortia formation 
for the treatment of wastewater.

Stimulation of growth by nutrient regeneration
In nutrient-limiting environments, heterotrophic bacte-
ria play a vital role in re-mineralizing nutrients to pro-
mote algal growth. Kim et al. [94] observed that bacteria 
synthesize vitamins and other growth-promoting metab-
olites essential for algal growth. This interaction offers 
benefits such as nutrient provision, biological material 
cycling, and the development of ecological niches for 
symbiotic organisms [97]. Many bacteria form symbi-
otic associations, and chemicals synthesized by microbes 
aid in their communication; for instance, bacteria and 
algae employ chemotaxis for communication [60]. Bacte-
ria also synthesize specific antibiotics that protect algae 
from parasites [98]. Inorganic phosphorus, produced 
during ATP hydrolysis by bacteria, is utilized by algae for 
growth. Metabolites released during algal blooms and 
cell death significantly influence bacterial metabolism 
[99]. Certain algae can produce transparent exopolymer 
particles, granular organic molecules that reveal the spe-
cies and bacterial activity of symbiotic algae. Algae also 
synthesize polysaccharides, carbohydrates, and other 
growth nutrients to enhance bacterial growth [100].

Inhibition of growth by metabolites
Both algae and bacteria synthesize antibacterial and algi-
cidal metabolites, such as chlorellin and lysozyme, which 
have inhibitory effects [101]. Algae are known to produce 
several compounds with antibacterial potential, including 
fatty acids (e.g., eicosapentaenoic acid, hexadecatrienoic 
acid), terpenes, glycosides, and chlorophyll derivatives 
(e.g., pheophytin and chlorophyllide) [102]. Similarly, 
bacteria synthesize compounds such as quinolones, pyr-
roles, glucosidases, indoles, chitinases, peptides, amino 
acids, and alkaloids, which exhibit algicidal activity 
[103]. Rajamani et  al. [104] reported the formation of 
lumichrome, a derivative of the vitamin riboflavin, by 
Chlamydomonas reinhardtii, which acts as an AHL (acyl-
homoserine lactone) antagonist to inhibit Pseudomonas 
aeruginosa, LasR. Additionally, microalgae produce 
quorum quenching (QQ) molecules, such as lactonases, 
acylases, and oxidases, to inhibit bacterial AHL signaling 
molecules and protect themselves from harmful bacteria 
[105].
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Signal transduction in BMC for mutualistic 
and antagonistic effect
In consortia, bacteria and algae respond to chemical sig-
nals and toxins. Microalgae produce quorum-sensing 
mimics, likely to interfere with bacterial communication. 
Additionally, molecules in the algal–bacterial symbio-
sis regulate virulence factor synthesis and reproductive 
activity [106]. It was reported that by blocking bacterial 
QS signals, Chlamydomonas reinhardtii and Chlorella 
saccharophila protect themselves from pathogenic Vibrio 
harveyi [105]. These signaling molecules that medi-
ate communication in BMC are divided into lipid-based 
molecules (AHLs) and microalgal allelochemicals (e.g., 
flavonoids and ectocarpene) [96]. Indole acetic acid 
(IAA) is one such signal molecule secreted by bacteria 
that encourages mutualism in both partners [67]. Addi-
tionally, some toxins are secreted by bacteria that inhibit 
algae or alter the algal life cycle [107]. Proteases secreted 
as QS by Flavobacterium Kordia algicida target its algal 
symbiotic hosts (Thalassiosira and Phaeodactylum) [85]. 
It has been discovered that microalgae react to bacte-
rial QS signaling molecules (AHLs) in a specific way, 
producing associated biological reactions and steadily 
influencing microalgae growth, biofilm formation, spore 

generation, and nutrient digestion [71, 108]. Inter-king-
dom signaling, discovered between eukaryotes and bac-
teria, is a category for signal transduction between algae 
and bacteria [66]. Additionally, it was reported that algae 
have the ability to excrete specific chemicals that pre-
vent bacteria from quorum sensing, and simultaneously 
bacterial quorum-sensing compounds (acyl homoserine 
lactones) hinder the germination and development of 
zoospores [109].

Factors affecting efficiency of BMC in textile 
effluent treatment
For efficient working of any consortia, different working 
as well as physiological conditions plays a significant role. 
Every microorganism has some working condition and 
requirement. The role of these conditions in working of 
BMC to treat textile effluent is discussed below.

Aeration
The balance of CO2 and O2 gases holds significance in 
algae metabolism, as both are essential at the catalytic site 
of ribulose 1,5 diphosphate oxygenase/carboxylase, a key 
enzyme in the Calvin cycle [99]. High rates of aeration 
can impede CO2 fixation by algae due to an abundance 

Fig. 4  Positive and negative interactions among bacterial–microalgal consortia by exchange of nutrients and metabolites
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of O2 [110]. Additionally, bacteria outpacing algae growth 
leads to insufficient oxygen production in BMCs, accel-
erating CO2 consumption by algae. Excessive aeration 
exacerbates this issue by depleting CO2 levels, sparking 
a competition between algae and bacteria for carbon 
sources and nutrient assimilation [100]. Thorough mix-
ing of BMCs through shaking can enhance the availability 
of CO2 and O2 for both algae and bacteria [82].

Light irradiation
Several studies have highlighted the significant influence 
of lighting on algae growth, nutrient utilization, and pol-
lutant degradation, considering factors like photoper-
iod, light intensity, and wavelength [111, 112]. In their 
research, Ferro et  al. [113] utilized a BMC system con-
sisting of C. vulgaris and its associated bacterium, Rhizo-
bium sp., within artificial municipal wastewater. While 
increased light irradiation has been shown to enhance 
nitrogen removal in algal–bacterial granules, BMCs face 
limitations in light exposure due to bacterial/algae cell 
shading, the dark hue of wastewater, and lighting dura-
tion. Exposure to a surface light intensity of 3000 lx can 
lead to severe photo-inhibition in algal–bacterial gran-
ules, potentially causing chloroplast degradation [92].

Variety of partners in BMC
In BMCs, the selection of microalgae and bacteria part-
ners significantly influences wastewater treatment, as 
their metabolic processes vary, affecting contaminant 
removal rates and efficiencies [114]. Certain microalgae 
excel in photosynthesis, producing higher oxygen levels 
that aid wastewater aeration, facilitating aerobic bacteria 
in contaminant degradation [115]. Others secrete extra-
cellular polymeric substances, fostering biofilm forma-
tion for enhanced contaminant removal [116]. Similarly, 
specific bacteria exhibit superior abilities in degrading 
particular contaminants, underscoring the importance of 
selecting suitable bacterial species for the consortium to 
optimize textile effluent treatment [94]. A well-designed 
consortium can yield an effective and durable wastewater 
treatment system [95].

Ratios of algal and bacterial partners
Achieving a balance in the proportions of algae and bac-
teria is crucial to establish commensal or mutualistic 
relationships, preventing parasitism. Toyama et al. [117] 
found that Emticicia sp. presence stimulated Euglena 
gracilis growth, indicating the significance of microbial 
ratios. Increasing bacterial concentration enhances nutri-
ent removal efficiency and chlorophyll content, as evi-
denced by studies employing various C. vulgaris and B. 
licheniformis inoculation ratios in artificial wastewater 

[118]. However, optimal phosphate and nitrogen removal 
occurred at a 1:3 algae-to-bacteria ratio [119].

Temperature and pH
Several studies have highlighted the correlation between 
the diversity of bacterial communities, particularly in 
aquatic environments, and water temperature, which 
directly impacts BMC productivity. During the summer, 
microalgae can flourish in high-temperature environ-
ments and predominate in aquatic ecosystems [120]. For 
instance, Proteobacteria have been found to be associated 
with microalgae. In an experiment, it was observed that 
Actinomycetes were present only in the group treated at 
20 °C and disappeared when exposed to higher tempera-
tures [121]. This indicates that temperature influences 
both bacterial and microalgal communities in wastewater 
simultaneously.There are various factors contributing to 
pH changes within BMC, such as a reduction in carbon 
dioxide concentration due to the activity of photosyn-
thetic plankton [122]. While the microalgae community 
tends to be less tolerant of acidic conditions compared 
to the bacterial community, paradoxically, bacterial com-
munities may be less suited to alkaline conditions than 
microalgal communities, potentially due to carbon diox-
ide absorption dynamics [123]. An acidic environment 
is more conducive for BMC to break down organic pol-
lutants, as the consortium requires lower pH conditions. 
Therefore, BMC can adapt its community composition to 
optimize pollutant degradation efficiency while creating 
a suitable growth environment for the consortium [110]. 
Studies have shown that BMC exhibits higher efficiency 
in removing heavy metals from acid mine drainage at 
lower pH levels (between 3.0 and 5.0) [122]. Hence, opti-
mizing pH is crucial to meet the diverse requirements of 
BMC and achieve maximal pollutant degradation.

Dissolved oxygen (DO)
The concentration of dissolved oxygen (DO) in water 
plays a crucial role in shaping the community structure 
of bacterial–microalgal consortia. In eutrophic water 
bodies, the agglomeration and decomposition of cyano-
bacterial cells can lead to a reduction in DO levels, 
potentially creating anoxic conditions. Li et  al. [116] 
examined how low DO levels (DO 0.5 mg/L) resulting 
from blooms in Taihu Lake affected the bacterial com-
munity structure. They found that Clostridium praz-
mowski dominated in the early stages of hypoxia, while 
Desulfovibrio and Comamonas sp. persisted throughout 
the hypoxia process. Parakh et  al. [124] investigated a 
system combining a photobioreactor for microalgae 
growth and a sequential batch reactor for sludge treat-
ment. They observed that prolonged low oxygen levels 
in the sequential batch reactor led to sludge adhesion 
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to the membrane. Despite this, dissolved oxygen is 
essential for the oxidation of pollutants in wastewa-
ter treatment by aerobic microorganisms [99]. How-
ever, excessive dissolved oxygen can inhibit anaerobic 
processes. Therefore, maintaining a balance between 
bacterial and microalgal communities is crucial for 
regulating DO levels and optimizing wastewater treat-
ment. While high dissolved oxygen concentrations can 
hinder photosynthesis-based microalgal growth, aero-
bic bacteria can consume oxygen produced by algae, 
potentially mitigating the issue of excessive DO that 
limits microalgal growth [116].

Nutrients (C/N/P)
Interactions between bacteria and microalgae play 
a pivotal role in carbon and nitrogen transport [125]. 
For instance, a study unveiled a mutualistic relation-
ship between Phaeodactylum and Donghicola sp., 
where Donghicola sp. converts methylamine into inor-
ganic nitrogen, facilitating algae growth [80]. Further-
more, the removal of ammonia nitrogen from a system, 
exceeding 95%, results in residual nitrate nitrogen, 
fostering increased biomass of both bacteria and algae 
[126]. Wang et  al. [127] found that a BMC compris-
ing an algae-cyanobacteria consortium is 6.3 times 
more effective at removing nitrous nitrogen in waste-
water plants. The synergy between algae and bacteria 
enhances bacterial capacity to solubilize phosphorus in 
wastewater, augmenting microalgal phosphate uptake 
[128]. Algae’s ability to absorb inorganic phosphate is 
bolstered when coexisting with compatible bacterial 
partners, shaping BMC communities in the phyco-
sphere. Arias et al. [126] concluded from their research 

that a high N/P ratio enhances biomass production in 
microalgal and cyanobacterial consortia.

Resource recovery and techno‑economic impacts 
of BMC in textile effluent treatment
The symbiotic relationship between bacteria and micro-
algae mutually supports efficient pollutant removal from 
textile wastewater. However, for successful implementa-
tion of BMC in textile effluent treatment at a commercial 
scale, conducting techno-economic and environmental 
analyses is crucial (Table 3). Although biomass from the 
microalgae–bacteria consortium holds potential for vari-
ous applications, including biofuel, biochemicals, animal 
feed, biofertilizers, nutraceuticals, cosmetics, and food 
ingredients, certain applications may be unsuitable for a 
consortium system due to the input of wastewater and 
the bacterial component. Therefore, only compatible 
applications are discussed below, considering the type of 
microalgae for each desired end product.

Renewable biofuel production
Numerous studies and research have highlighted the high 
biomass production efficiency of both microalgae and 
bacteria, but the BMC stands out as particularly effective 
for textile effluent treatment. Microalgae exhibit a much 
faster doubling time compared to land-based energy 
crops, with lipid yields surpassing those of traditional oil 
crops by 15–300 times, making them an ideal source for 
biofuel production [136, 137]. Microalgae lipid composi-
tion typically includes approximately 0.7–30.6% free fatty 
acids and 4.1–77.5% triglycerides, which can be readily 
converted into biodiesel [138, 139]. Indole-3-acetic acids 
released by plant growth-promoting bacteria have been 
found to double lipid content and productivity, indicating 
the potential for enhanced biofuel production [140]. The 

Table 3  Techno-economic impact and challenges of applying BMC in textile effluent treatment

Impact Details References

Techno-
economic 
impact

Improved treatment efficiency Enhance inorganic carbon fixation and increase microalgae biomass [70]

Cost-effectiveness Reduce the cost of treatment as well as growth nutrient because microalgae biomass 
was used as substrate by bacteria

[129]

Renewable energy production Energy-rich biomass is generated during utilization of N, P, and other inorganic nutrients 
during nitrification and photosynthesis

[130]

Resources recycling Convert nutrients from the effluent into biomass, e.g., conversion of phosphorous found 
in the textile effluent into polyphosphate

[131]

Reduced discharge of pollutants Convert toxic metals into less toxic ones before discharge [132]

Greenhouse gas emissions Microalgae consume high levels of CO2 and convert it into chemical energy 
with the help of sunlight

[45]

Challenges Inhibition of microalgal growth Competition for nutrients
Production of antifungal metabolites by bacteria

[133]

Inhibition of bacterial partner Production of antibacterial metabolites by algae [134]

Non-availability of information Lack of information regarding co-cultivation and scale − up strategies [135]
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high-lipid content in microalgae may be partly attributed 
to nutritional deficiency resulting from microbial com-
petition within the BMC, making this method advanta-
geous for large-scale biofuel production [74]. While some 
microalgae species like T. maculata exhibit relatively low 
lipid concentrations, others like Schizochytrium sp. boast 
lipid concentrations exceeding 80% [141]. Blending BMC 
biomass with palm oil is suggested for use as biofuel due 
to its low monounsaturated acid content [142]. Moving 
forward, proper planning, optimization, and simulation 
will be essential for reducing operational costs and ensur-
ing sustainable biofuel recovery from BMC cultivated in 
textile wastewater.

Resources recycling
The bacterial–microalgal consortium (BMC) can effec-
tively convert phosphorus found in textile effluent into 
polyphosphate, which finds diverse applications in med-
icine, biomaterials, and the food industry [131]. The 
carbon sources present in algal cells can be readily con-
verted into polysaccharides and bio-fats, serving various 
purposes in disciplines such as pharmacology, diagnos-
tics, and cosmetics [143]. Additionally, the consortium 
demonstrates a highly efficient mechanism for recover-
ing nitrogen from textile effluent, which can be reused 
as organic fertilizer or as a substitute for fish feed [129]. 
Microalgae also serve as excellent sources for produc-
ing lipids, carbohydrates, proteins, and other specific 
biochemicals. Certain microalgae species contain high 
percentages of fatty acids, such as C. reinhardtii with 
49.9% and I. galbana with 47% fatty acid content [144, 
145]. These fatty acids hold potential for nutritional and 
therapeutic purposes. Examples like C. stigmatophora 
(~ 55%) and C. vulgaris (> 52%) highlight microalgae with 
high carbohydrate contents [146]. Carbohydrates derived 
from microalgae, aside from serving as a source for alco-
hol, can be converted into bioplastics and produced using 
wastewater. Moreover, cyanobacteria produce exopoly-
saccharides that can be utilized as gelling agents, thick-
eners, stabilizers, biolubricants, and anti-inflammatory 
agents. Protein in microalgae primarily exists in the form 
of amino acids. Species like S. maxima and S. platensis 
contain all necessary amino acids in quantities suitable 
for treating conditions such as diabetes and obesity [147]. 
Proteins from microalgae or plants can activate cholecys-
tokinin, aiding in lowering cholesterol levels and facilitat-
ing human enzymatic processes. Incorporating bacteria 
into microalgae cultures significantly alters the biochemi-
cal composition [148]. For instance, a microalgae–bacte-
ria consortium of A. brasilense Cd and A. protothecoides 
UTEX 2341 improved protein content by 40–60% [108]. 
Similarly, the consortium system of M. capsulatus and C. 
sorokiniana enhanced carbohydrates by 42% and lipids 

by 15% [149]. However, due to interactions with bacteria, 
lipid enhancement may occur in the form of extracellular 
polymeric compounds. Microalgae cultivated in waste-
water can serve as a biofertilizer or soil additive, enrich-
ing soil nitrogen and phosphorus levels, as well as other 
trace elements essential for plant growth [66]. The bio-
mass derived from landfill leachate can be directly con-
verted into biofertilizer.

Animal feed
Microalgae represent a valuable resource for dietary sup-
plements in aquaculture and livestock farming, offering 
various benefits for animal health and growth. For exam-
ple, feeding ornamental goldfish with microalgae has 
been shown to enhance their coloration, while the use of 
Nannochloropsis sp. in finfish hatcheries has resulted in 
elevated levels of DPA/EPA, essential fatty acids for fish 
development [150]. Poultry birds, including chickens, 
ducks, turkeys, and quail, have experienced significant 
increases in body weight when fed with microalgae. Spe-
cifically, feeding chickens with H. pluvialis, N. gaditana, 
and Spirulina sp. has led to improvements in muscle 
pigmentation, antioxidant components in the liver, and 
carotenoid coloration in egg yolks [151].

Astaxanthin, a red pigment found in microalgae, pos-
sesses antioxidant properties and offers various health 
benefits, including cancer prevention and heart disease 
protection. While synthetic astaxanthin has been tra-
ditionally used in farmed salmon feed to achieve the 
desired pink coloration, concerns over its impurities have 
led to bans in certain countries. Microalgae like H. plu-
vialis offer a natural alternative, providing salmon with 
a source of astaxanthin that result in flesh coloration 90 
times more intense than synthetic astaxanthin, without 
any associated toxicity risks [152].

Moreover, the microalgae–bacteria consortium system 
enhances the aroma of feed, making it more appealing to 
animals. However, it is important to note that consortium 
systems often form flocs, which can pose health risks to 
animals if ingested. Agro-industrial wastewater serves 
as an ideal substrate for producing animal feed using the 
microalgae–bacteria consortium, offering a sustainable 
solution for both waste management and animal nutri-
tion [153].

Reduced discharge of pollutants
The environmental impact of bacterial–algal consortia 
lies in their capacity to mitigate the release of pollut-
ants into the environment, particularly heavy metals that 
pose risks to both human health and ecosystem integrity 
[132]. While microalgae offer valuable applications in 
various sectors such as food, medicine, and agriculture, 
there are limitations to their utilization. Advancements 
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in biomass utilization research are focused on enhanc-
ing the removal of additional heavy metals or persistent 
substances from economically viable resources [40]. 
Additionally, the conversion of such biomass into biogas 
through anaerobic digestion presents a more environ-
mentally friendly solution, as it eliminates direct con-
tact between the biomass and humans, thereby reducing 
potential health risks.

Reduce greenhouse gas emission
The rise in carbon dioxide emissions from various 
sources, particularly industrial activities, has significantly 
contributed to the greenhouse effect, a leading cause of 
global warming. Recent studies indicate that atmospheric 
CO2 levels have surpassed 400 parts per million (ppm), 
reaching the highest recorded levels in over 800,000 years 
[154]. Microalgae play a crucial role in mitigating this 
issue, as they possess the ability to consume substan-
tial amounts of CO2 and convert it into chemical energy 
through photosynthesis. In comparison to terrestrial 
plants, microalgae exhibit a much higher rate of carbon 
dioxide fixation, ranging from 10 to 50 times that of their 
land-based counterparts [45]. Within a bacterial–algal 
consortium (BMC), the symbiotic relationship between 
microalgae and bacteria becomes paramount for efficient 
CO2 to O2 exchange, which is essential for algae growth 
and carbon dioxide fixation. This underscores the impor-
tance of photosynthetic microalgae as valuable assets 
for carbon dioxide sequestration, thereby promoting the 
advancement of a low-carbon economy and contributing 
to the reduction of greenhouse gas emissions [134].

Improved treatment efficiency
Bacteria co-cultured with microalgae play a crucial role 
by secreting vitamins that enhance the efficiency of bac-
terial–microalgal consortia (BMCs) and support the spe-
cific functions of the microalgal partner. Several studies 
have highlighted the benefits of co-culturing vitamin 
B12-dependent microalgae with bacteria, resulting in 
improved microalgal growth [64]. Moreover, maintain-
ing a mutualistic relationship between microalgae and 
bacteria has been shown to enhance nitrate consumption 
and pollutant removal [155]. For instance, mutualisms 
between Azospirillum brasilense and microalgae such as 
Scenedesmus, Chlorella, and Chlamydomonas have led 
to increased microalgal populations and biomass, along 
with improved inorganic carbon fixation [82]. Traditional 
aeration methods often lead to carbon dioxide stripping 
and elevated dissolved oxygen levels, both of which hin-
der microalgae growth. However, employing techniques 
like algal biofilms or membrane aeration can address 
these issues, thereby enhancing the efficiency of textile 
wastewater treatment. In a study by Zhang et al. [70], it 

was demonstrated that increasing the CO2 concentra-
tion from 0.04% to 2% resulted in improved algae growth 
within algal biofilms, ultimately enhancing the BMC 
efficiency.

Cost‑effectiveness
The economic analysis of BMCs should prioritize the 
costs and returns associated with recovering valuable 
products to ensure the cost-effectiveness of this technol-
ogy. In a study focused on treating piggery biogas slurry, 
the approximate value of the products generated by the 
consortium was found to be $15.06 per kg based on mar-
ket prices. However, the costs associated with wastewater 
treatment were approximately $0.75 per ton, with a bio-
mass production cost of $0.47 per ton [129]. Algae have 
the potential to produce compounds applicable in vari-
ous industries, including biofuels, pharmaceuticals, and 
agriculture. Similarly, bacteria can produce extracellular 
polymeric substances (EPS) that facilitate biological floc-
culation and phosphorus removal in textile effluent [156]. 
Therefore, if valuable products such as vitamins, bioferti-
lizers, and essential oils can be extracted from the micro-
bial biomass cultivated in textile wastewater using BMC 
technology, it has the potential to become both cost-
effective and sustainable.

Challenges of applying BMC in textile effluent 
treatment
Although the role of bacteria in the growth of algae and 
the treatment of textile effluent is obvious because bac-
teria provide both growth-promoting signals and the 
nutrients required, this consortium must overcome the 
challenge of non-target bacterial blooms in order to be 
sustainable and stable [117]. In order to implement this 
technology at commercial level number of challenges 
need to be addressed as given below:

Inhibition of microalgal growth
Bacterial biotic stress can significantly hinder algal 
growth, particularly in oligotrophic environments where 
both bacteria and algae compete for essential nutrients 
such as nitrogen, phosphorus, and various organic mol-
ecules present in effluent [48]. Studies have shown that 
algal bioactivities are often suppressed under phospho-
rus-deficient conditions because bacteria have a higher 
efficiency in phosphate absorption compared to micro-
algae [128]. Similarly, ammonia-oxidizing bacteria can 
outcompete microalgae for ammonia, leading to a reduc-
tion in microalgal growth [111]. However, under specific 
circumstances, microalgae may prevail over ammonia-
oxidizing bacteria for limited phosphorus resources 
[116]. Moreover, certain bacteria in natural environments 
can release substances that are detrimental to algae, and 
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specific bacterial strains have been found to produce 
inhibitory molecules against algal growth [157]. Bacte-
ria can also disrupt algal microenvironments by lowering 
pH levels below the optimal neutral or alkaline range for 
algae. Some nitrifying and plant growth-promoting bac-
teria can generate acidic substrates, leading to acidifica-
tion of the culture system and a decrease in chlorophyll 
content in microalgae [94]. Maintaining the pH of the 
algal–bacterial consortium at or near 7 has been shown 
to enhance nitrogen removal and increase chlorophyll-a 
levels [14].

BMCs may also be susceptible to diseases caused by 
protozoa, fungi, or zooplankton. Investigation into algae 
extracts revealed the presence of antifungal substances 
such as phenolic and carotenoid compounds, although 
their effectiveness is influenced by various culture param-
eters such as light exposure, growth stage, and tempera-
ture [133]. This suggests that while algae possess some 
degree of fungal resistance, it may be limited by the over-
all health of the algae and the environmental conditions 
in which they are cultivated. Furthermore, the presence 
of pathogenic bacteria can directly impede algal growth, 
potentially compromising the algal defense mechanisms 
and increasing susceptibility to other infections [96].

Parasitic attack on microalgal partner
Bacteria that parasitize algae have the ability to con-
sume internal substances of algae using enzymes like 
glucosidases, aminopeptidases, cellulases, alkaline 
phosphatases, lipase, among others [90]. However, this 
process raises concerns about the utilization of algal 
products, as it can potentially reduce biomass yield and 
compromise its quality [107].

Inhibition of bacterial partner
Bacteria and microalgae have the ability to inhibit each 
otherʼs growth and even cause mortality by producing 
inhibitory metabolites. Yang et  al. [134] illustrated that 
microalgae can generate toxins that impede bacterial 
growth. Additionally, microalgae produce extracellular 
secretions such as soluble amino acids and antibiotics, 
which serve as examples of substances capable of inhibit-
ing or even killing bacteria and pathogens [133].

Impact of wastewater antibiotics on BMC
The existence of antibiotics in wastewater presents a for-
midable hurdle for bacterial–microalgal consortia (BMC) 
employed in wastewater treatment processes. Commonly 
present in wastewater effluents from pharmaceutical 
manufacturing, hospitals, and household use, antibiotics 
can negatively affect the microbial communities within 
BMC [158]. Research conducted by Liu et al. [159] delved 
into the repercussions of tetracycline antibiotics on BMC 

microbial communities, revealing that exposure to sub-
lethal doses of tetracycline resulted in changes to com-
munity structure and reduced microbial diversity within 
the consortia. Additionally, antibiotic exposure has been 
shown to foster the emergence of antibiotic-resistant 
bacteria within BMC, potentially compromising the effi-
ciency of wastewater treatment processes and contrib-
uting to the spread of antibiotic resistance genes in the 
environment [160].

In addition to impacting bacterial populations, antibi-
otics can also adversely affect microalgae within BMC. 
Studies have indicated that certain antibiotics, such 
as sulfonamides and fluoroquinolones, can hinder the 
growth and photosynthetic activity of microalgae, result-
ing in diminished biomass production and decreased 
nutrient removal efficiency in BMC. Furthermore, antibi-
otic-induced stress on microalgae can impair their capac-
ity to produce extracellular polymeric substances (EPS), 
crucial for biofilm formation and pollutant adsorption in 
wastewater treatment systems [161].

Overall, the presence of antibiotics in wastewater can 
substantially alter the structure and function of bacte-
rial–microalgal consortia, posing significant challenges 
to their effectiveness in wastewater treatment. However, 
strategies to mitigate the inhibitory effects of antibiot-
ics on BMC include utilizing antibiotic-resistant strains, 
optimizing treatment processes, and implementing 
advanced treatment technologies to eliminate antibiotics 
from wastewater before BMC treatment.

Future perspectives
The future prospects of BMC in textile effluent man-
agement are promising, with several potential develop-
ments on the horizon: (a) isolation and development 
of new bacterial and microalgal strains optimized for 
bioremediation of textile industry effluent. (b) Utiliza-
tion of synthetic biology to engineer BMC for enhanced 
efficiency and specificity towards target pollutants. (c) 
Scaling up BMC systems from laboratory to pilot and 
commercial-scale to establish feasibility and economic 
viability. (d) Bioreactor design and optimization to 
improve BMC performance in large-scale bioreme-
diation projects. (e) Integration of genetic tools like 
CRISPR-Cas9 to enhance BMC performance in textile 
effluent bioremediation. (f ) Application of nanotech-
nology to develop nanomaterials enhancing pollutant 
uptake, degradation, and BMC colonization. (g) Inte-
gration of AI to design BMC systems capable of predict-
ing and adapting to changing environmental conditions 
for improved performance. (h) Collaboration between 
academia and industry to develop more efficient and 
cost-effective BMC-based bioremediation technolo-
gies. Technological innovations and multidisciplinary 
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approaches are expected to drive the future of BMC 
for textile effluent bioremediation, leading to more effi-
cient and sustainable strategies. With further research 
and development, BMC could become a valuable tool 
for mitigating the environmental impact of the textile 
industry.

Conclusion
Bacterial–microalgal consortia (BMC) have emerged 
as a promising solution for remediating textile industry 
effluent by efficiently removing pollutants and generat-
ing value-added products. Recent research trends have 
focused on optimizing BMC composition and cultivation 
conditions, exploring novel functionalities, and employ-
ing immobilized BMCs for enhanced stability and reusa-
bility, thus making them more cost-effective and practical 
for industrial use. Looking ahead, BMCs are poised to 
play an increasingly vital role in wastewater treatment, 
addressing environmental pollution concerns sustain-
ably. Future efforts will likely concentrate on enhancing 
BMC efficiency and resilience through genetic engineer-
ing and synthetic biology methods. Moreover, BMCs’ 
potential to yield high-value commodities like biofuels 
and nutraceuticals will continue to be investigated for 
cost-effectiveness. In essence, BMCs offer a promising 
avenue for textile effluent bioremediation, offering pol-
lutant removal and value-added product generation for a 
cleaner, more sustainable environment.
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