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Abstract 

Electronic waste, also known as e-waste, is the discarded or by-products of electronic appliances, constituting 
a major percentage of the total solid waste produced globally. Such e-waste is mostly composed of plastics, vari-
ous heavy metals, azo dyes, and xenobiotic components, which are mostly non-biodegradable or less degradable 
in nature. As a result, they increase environmental toxicity, preventing the growth of crops and causing health issues 
for humans and other animals. On the other hand, recycling e-waste may also lead to the consumption of heavy 
metals through water or the inhalation of polluted air after combustion, which may cause various health issues 
such as asthma, nerve, respiratory, kidney, liver disease, and even cancer. Hence, microbial degradation of e-waste 
has become a new trend in managing such solid wastes. However, their mode of action is somewhat less explored. 
Microbes degrade various components of e-waste through a number of mechanisms such as bioleaching, biosorp-
tion, biotransformation, bioaccumulation, and biomineralization. Some microorganisms release enzymes such 
as reductases, laccases, esterases, carboxylesterases, catalases, and dioxygenases for the bioconversion of various 
components of e-waste into their less toxic forms. This review provides insight into the role of microbes in the con-
version of various components of e-wastes such as polyaromatic hydrocarbons (PAHs), azo dyes, and heavy metals 
and their mode of action.
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Introduction
With the global demand for electronic goods on the rise, 
effective management of electronic waste (e-waste) has 
emerged as a pivotal issue within the realm of solid waste 
management (Ghulam et al., 2023). This concern extends 
across developed, transitioning, and emerging nations, 
forming an intricate web of interconnected challenges 
[159]. The shipment of thousands of electronic products 
across borders is vital for global trade, yet once their 
usage lifecycle terminates, they transform into hazardous 

waste consisting of harmful substances such as toxic 
chemicals, heavy metals, and non-biodegradable plastics. 
This transformation results in pollution and the onset of 
severe health ailments [159]. E-waste is a complex mix-
ture of metals and heavy metals, all of which are deadly 
and represent significant threats to the environment and 
its ecosystems [99]. Lead, mercury, cadmium, nickel, 
copper, zinc, and other metallic compounds typically 
found in electrical gadgets are considered hazardous [40]. 
Furthermore, e-waste disposal adds an array of plastic 
components to the environment, including polyethylene 
terephthalate esters, polystyrene, polyvinyl chloride, and 
polypropylene as well as ceramics, printed circuit boards, 
plywood, and a variety of other materials [119]. Organic 
substances found in e-waste include polycyclic aromatic 
hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins 
(PCDDs), polybrominated dibenzo-p-dioxins (PBDDs), 
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dechlorane plus (DP), and polychlorinated biphenyls 
(PCBs), which are also toxic to the environment [137].

Directly or indirectly, there is no doubt that electronic 
waste pollutes the environment and its natural resources 
such as soil, air, water, or land surfaces (Raj et al., 2023). 
These wastes are dangerous to the health of both plants 
and animals, as they are mainly carcinogenic, consisting 
of heavy metals, acids, and non-biodegradable polymers 
[116]. Because of their ability to biomagnify the food 
chain, appropriate management from collection through 
disposal is necessary [9]. Around 75% of this waste 
remains within homes, offices, or industries, destined to 
become discarded materials. The non-recyclable waste 
undergoes processes such as dismantling, shredding, 
and even burning, releasing significant volumes of toxic 
smoke laden with heavy carcinogenic compounds. These 
emissions contribute to health deterioration, leading to 
skin and respiratory issues [33].

Microbes, in particular, have shown exceptional effec-
tiveness in dealing with environmental contaminants. 
Both fungi and cyanogenic microbes are categorized as 
organotrophs [35]. Fungi are responsible for producing 
organic acids, while cyanobacteria produce hydrogen 
cyanide when organic carbon is present [65]. This inter-
action of organic acids and hydrogen cyanide aids the 
bioleaching process [161]. Improving the employment of 
microorganisms as bioremediation agents is critical for 
furthering the cause of a sustainable environment (Akin-
semolu et  al., 2018). This review places special empha-
sis on the role of various microbes in the remediation of 
the major biodegradable components present in e-waste 
such as heavy metals, PAHs, and azo dye,their mode of 
action; and the challenges associated with the process. 
Additionally, it provides a brief snapshot of the role of 
various microbial enzymes in the conversion of e-waste 
components.

Major sources and the components of e‑waste
Currently, e-waste stands as the fastest-growing waste 
source, experiencing an exponential increase in volume 
[99]. Globally, millions of metric tonnes of e-waste are 
generated annually, with an expected yearly rise of 4–5% 
[173]. This remarkable expansion can be attributed to 
several critical factors, including urbanization, industri-
alization, and our dependence on electronic and electri-
cal components [12]. Both domestic consumption and 
foreign export have contributed to the demand surge for 
a wide array of electronic products [89]. Notably, within 
the Indian industry landscape, the electronics sector has 
emerged as one of the fastest-growing segments [140].

E-waste encompasses a spectrum of over 1000 different 
materials, with composition varying based on the man-
ufacturer, equipment type, and age [117]. Comprising 

approximately 38% ferrous metals, 16.5% non-ferrous 
metals, and 26% plastics, e-waste predominantly con-
tains iron and steel constituting over 50% of the fer-
rous metal fraction, followed by various other elements 
(Moyen Massa et al., 2023). Metals are commonly found 
in e-waste in elemental form or as alloys of various ele-
ments [170]. In an era of increasing innovation, modern 
gadgets boast an astounding variety of up to 60 compo-
nents, thereby complicating these devices [171]. With 
heightened complexity comes an upsurge in the number 
of metals with luminous, conductive, and alloying capa-
bilities [171].

A multitude of metals can be found in varied combi-
nations and concentrations in diverse electrical and elec-
tronic devices [168]. Precise quantities of elements are 
requisite for manufacturing components like printed 
circuit boards (PCBs), which are ubiquitous in laptops, 
personal computers, mobile phones, and similar devices. 
These components may encompass hazardous elements 
such as chromium, zinc, lead, nickel, and copper, whether 
in elemental state or alloyed form [78]. Electrical steels 
are widely employed in electronics due to their low iron 
loss and maximum magnetization capacity (Hayakawa 
et al., 2020). Display technologies like cathode ray tubes 
(CRTs), liquid crystal displays (LCDs), and light-emitting 
diodes (LEDs) are prevalent in TV monitors owing to 
their availability and high resolution (Ciftci et  al., 2017) 
as well as their permanent magnetism (Bloodworth et al., 
2014). Rechargeable batteries (lithium-ion/lithium poly-
mer), extensively utilized in laptops and mobile phones, 
incorporate elements such as lithium oxides, lithium 
cobalt oxides, and rare earth metals such as lantha-
num (La) [5, 103]. Additionally, heavy metals such as 
lead, mercury, cadmium, barium, beryllium, chromium, 
lithium, nickel, zinc sulfide, selenium, yttrium, and 
europium (rare earth elements) and arsenic constitute 
essential parts of electrical components [99]. Further-
more, halogenated substances such as CFCs, polychlorin-
ated biphenyls (PCBs, polybrominated diphenyl ethers 
(PBDEs, polybrominated biphenyls (PBBs, brominated 
flame retardants (BFRs are also present in some elec-
tronic appliances such as ACs and refrigerators (Harrad 
et al., 2012; Birnbaum et al., 2004).

Environment and health effects
In recent years, concerns regarding the presence and dis-
tribution of organic contaminants, including heavy met-
als, within the environment have intensified [32]. Any 
method of garbage disposal, whether in landfills or bod-
ies of water, has serious effects on both human health and 
the ecosystem [157]. Various hazardous electrical com-
ponents and their health consequences are depicted in 
Table 1. Most e-waste contains heavy metals such as Pb, 
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Cd, Hg, Zn, and Li, which exhibit adverse health effects 
on the central nervous system, kidneys, blood, lungs, 
and skin, among others (Table  1). Additionally, compo-
nents such as barium, beryllium, and dibenzofurans may 
cause various lung and skin diseases and even cancer 
(Table  1). The health effects of e-waste can result from 
direct exposure in recycling sites, consumption of heavy 
metals through water, or inhalation of polluted air after 
combustion [128]. This escalation of concern is largely 
due to substantial evidence indicating that a significant 
number of chemical groups have demonstrated carcino-
genic properties in experimental animals, thereby posing 
a potential hazard to human health [129].

These chemicals are usually classified into three types:

•	 Primary contaminants include heavy metals and 
halogenated chemicals like lead, cadmium, barium, 
nickel, and zinc [38].

•	 Secondary contaminants, including by-products of 
incorrect recycling operations, contain chemicals 
such as dioxins, PAHs, and PHAHs [188].

•	 Tertiary contaminants include reagents used in hydro 
and pyrometallurgical processes [38].

The recycling process, such as chlorination, thermal 
treatment, adsorption, chemical extraction, membrane 
separation, and ion exchange, releases heavy metals that 
directly infiltrate the soil surface, posing a threat to the 
soil ecosystem [153]. Consequently, this waste can con-
taminate water sources, threatening marine life [16]. The 
biomagnification process can be triggered,for instance, 
cadmium pollution in groundwater systems that sur-
passes the normal threshold has a negative impact on 
aquatic species, triggering a biomagnification process 
[84]. Plants absorb and store heavy metals in their tissues 
when this water is used for irrigation, endangering both 
plant and human health if ingested [191]. A study con-
ducted in Vietnam confirmed the presence of dioxins in 
e-waste recycling facilities as the outcome of open burn-
ing and storage practices, resulting in polluted land and 
rivers [81]. The concentration reported surpassed WHO 
guidelines [163]. For instance, heavy metal like cadmium 
inhalation can cause potential lung illness and kidney 
damage [40]. The overall effect of e-wastes on the envi-
ronment is depicted in Fig. 1.

Three commercial forms of PBDEs (penta-, octa-, and 
deca-PBDEs) are banned in Europe, Canada, and Amer-
ica [68] due to their ability to biomagnify food chains, 
hence slowing brain development in animals and caus-
ing other health issues [66]. Birnbaum and Staskal [28] 
downplayed the use of brominated flame retardants in 
plastics used in numerous electronics, such as PBDE, 
octa-, deca-, and penta-PBDE. These substances possess 

the capability to induce significant health concerns, 
including the disruption of thyroid gland function. Addi-
tionally, heavy metals like mercury, often found in elec-
tronic components like fluorescent tubes, switches, and 
LED screens, exert negative effects on health, leading to 
sensory impairment, dermatitis, memory loss, etc. [18]. 
Polyvinyl chloride (PVC), widely used as an insulating 
material in electrical cables, has the propensity to bioac-
cumulate [167].

E‑waste management practices
According to the United States Environmental Protection 
Agency (USEPA), the United States generates more gar-
bage than many other countries, averaging an estimated 
2.0 kg of municipal solid waste per person each day [174]. 
Notably, electronic waste has emerged as a significant 
issue in the United States [93]. Every year, over 3.2 mil-
lion tons of electronic waste, including computers, dis-
plays, and TVs, find their way into US landfills [174]. This 
waste often gets incorrectly disposed of or repurposed 
without adequate consideration for environmental effects 
or worker health and safety [26]. Similarly, the Euro-
pean Commission has proposed updates to regulations 
governing electrical and electronic devices to enhance 
sustainability and mitigate environmental impacts. This 
initiative aims to reduce electronic waste by implement-
ing various recommendations. These recommendations 
primarily focus on waste reduction, emphasizing the 
design of products to be more durable and repairable to 
extend their lifespan, encouraging reuse through take-
back programs where customers can return old products 
for repair and resale, promoting recycling to recover and 
reuse valuable materials, and ensuring appropriate dis-
posal of electronic equipment [61]. The amendment is 
designed to tackle the growing volume of waste in this 
category while acknowledging the environmental and 
health risks associated with improperly managed e-waste 
[61]. Efforts such as the Restriction of Hazardous Sub-
stances (RoHS) in Electrical and Electronic Equipment 
have been initiated in California, Norway, China, South 
Korea, and Japan. Additionally, many countries, includ-
ing Australia, New Zealand, Thailand, Malaysia, and 
Brazil, are taking significant steps to restrict hazardous 
substances such as PAHs, PDBEs, and PCBs [41].

Similarly, the European Commission has proposed 
updates to regulations governing electrical and elec-
tronic devices with the aim of promoting sustainability 
and reducing environmental impacts. These measures, 
which have been enacted to combat electronic waste, pri-
marily focus on waste reduction by designing products 
to be more durable and repairable, thereby extending 
their lifespan. They also encourage reuse through take-
back programs, recycling to recover valuable materials, 
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and appropriate disposal of electronic equipment. This 
amendment aims to tackle the increasing volume of 
waste in this category while also addressing the envi-
ronmental and health risks associated with improperly 
managed e-waste. Efforts such as the Restriction of Haz-
ardous Substances (RoHS) in Electrical and Electronic 
Equipment have been initiated in California, Norway, 
China, South Korea, and Japan. Additionally, many coun-
tries, including Australia, New Zealand, Thailand, Malay-
sia, and Brazil, are taking significant steps to restrict 
hazardous substances such as PAHs, PDBEs, and PCBs. 
For example, Australia introduced the National Televi-
sion and Computer Recycling Scheme (NTCRS) in 2011 
to provide recycling services for TVs, computers, print-
ers, and related equipment [53]. The Product Steward-
ship Act 2011 mandates producers and importers to 
responsibly handle the disposal of their goods, including 
electronic waste, after the product’s lifespan. In New Zea-
land, extended producer responsibility (EPR) schemes for 
electronic items and the Waste Minimization Act 2008 
provide a framework for electronic waste management 
and encourage waste reduction initiatives [172, 177]. 
Thailand has implemented the Hazardous Substance 
Act to regulate the production, import, export, and use 
of hazardous compounds found in electronic goods. 
The country also employs various e-waste management 

measures, including collection and reusability of waste 
[165]. Malaysia has strengthened its regulatory frame-
work for electronic waste management and hazardous 
substances. The Environmental Quality Act 1974 gov-
erns the production, storage, export, treatment, and dis-
posal of dangerous wastes, including electronic waste. 
Similarly, Brazil has adopted the National Policy on 
Solid Waste (PNRS) and the National Solid Waste Plan 
(PNSR), which include measures for electronic waste 
management. Brazil actively participates in international 
agreements and alliances aimed at addressing the chal-
lenges posed by e-waste and hazardous substances [31].

In India, e-waste management operates in a compara-
ble manner, wherein urban families engage in informal 
recycling activities like collecting, sorting, repairing, and 
disassembling outdated devices to secure employment 
opportunities (https://​www.​waste​chind​ia.​com/​chall​
enges-​for-e-​waste-​manag​ement-​in-​india/). However, 
unlike in developed nations, there is no tradition in India 
of customers willingly giving unwanted devices to profes-
sional e-waste disposal centers (https://​hindr​ise.​org/​resou​
rces/e-​waste-​manag​ement-​in-​india/). According to the 
National Research Development Corporation (NRDC), 
recyclable electronic items find their way to recycling 
facilities predominantly located in Asian and African 
countries [126]. For example, India, predominantly in 

Fig. 1  The schematic diagram illustrates the comprehensive impact of e-waste on human health and the environment, including soil toxicity, 
biomagnification, air pollution, and other factors

https://www.wastechindia.com/challenges-for-e-waste-management-in-india/
https://www.wastechindia.com/challenges-for-e-waste-management-in-india/
https://hindrise.org/resources/e-waste-management-in-india/
https://hindrise.org/resources/e-waste-management-in-india/
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Delhi and Bengaluru [14], as well as Pakistan, notably in 
Karachi and Lahore [90], and China [186, 187] serve as 
major destinations. Other countries like Uganda, Peru, 
and Brazil also play a great role in generating massive 
amounts of e-waste [179].

Microbial degradation of e‑waste
Biodegradation refers to the chemical breakdown of 
materials by living organisms, occurring either aerobi-
cally or anaerobically [164]. This process significantly 
impacts the breakdown of organic compounds [164]. 
Most of the microbes release biosurfactants to initiate the 
degradation process of PAHs. Biosurfactants are extra-
cellular surfactants secreted by some microorganisms 
that accelerate the biodegradation process [29]. Biosur-
factants are seen as promising options for bioremediation 
due to their ionic properties, low toxicity, strong emulsi-
fying capabilities, multifunctionality, surface activity, and 
compatibility with the environment (Mishra et al., 2021). 
Additionally, biosurfactants exhibit a diverse range of 
chemical structures and a broad spectrum of metal selec-
tivity and binding capacity, giving them a greater ability 
to remove contaminants (Mishra et al., 2021).

E-wastes are mostly composed of heavy metals (e.g., 
Ni, Cd, Al, Cu, Mn, Zn, Au, Zn, Fe, Ag, Pb, Hg, Cr, and 
Sn), polychlorinated biphenyls (PCBs), and polyaromatic 
hydrocarbons (PAHs). Certain microbes have a diverse 
catabolic capacity that allows them to degrade, trans-
form, or accumulate a wide range of compounds, includ-
ing hydrocarbons such as oil, polychlorinated biphenyls 
(PCBs), polyaromatic hydrocarbons (PAHs), pharmaceu-
ticals, pesticides, and metals (Table  2) [112]. A number 
of microorganisms such as A. ferrooxidans, A. thioox-
idans, S. thermosulfidooxidans, Pseudomonas putida, 
Pseudomonas aeruginosa, Pseudomonas fluorescens, 
Chromobacterium violaceum, A. fumigatus A. flavipes, 
A. japonicus A. tubingensis, A. versicolor, A. niger, Chro-
mobacterium violaceum, B. megaterium, Penicillium sim-
plicissimum, Saccharomyces cerevisiae, Leptospirillum 
ferriphilum, Alicyclobacillus sp., A. caldus, and Sulfoba-
cillus sp. are known to have the potential to absorb vari-
ous heavy metals and other components such as PAHs 
and PCBs through a number of mechanisms (Arshadi 
et al 2015; Hong et al., 2014; Natarajan et al., 2014; Nata-
rajan et al., 2015), [11, 36, 44, 94, 98, 145, 147, 154, 182]. 
Although heavy metals are not biodegradable, they could 
potentially be converted from one chemical state to 
another, making them less hazardous to the environment 
[63]. Microbes aid in the transformation of contaminants 
into end products such as carbon dioxide and water, as 
well as other intermediate metabolic chemicals, during 
mineralization. Similarly, immobilization is the process 
of converting chemicals into a state that makes them 

inaccessible in the environment [138]. E. asburiae and B. 
cereus have been found to have a function in immobiliz-
ing heavy metals that contribute to pollution [63]. Immo-
bilization can be accomplished in  situ or ex situ [138]. 
The ex situ method comprises transferring polluted soils 
from the pollution site to another place where a micro-
biological technique is used to immobilize the metal ions 
responsible for the contamination [15]. In contrast, the 
in  situ technique entails treating pollution at its source 
[37].

A more effective approach to improving the efficacy of 
bioremediation processes in specific locations involves 
designing microbial methodologies that take into account 
factors such as regulatory mechanisms, microbial growth 
dynamics in contaminated areas, metabolic capabilities, 
and their responses to varying environmental condi-
tions [8]. While exposure to certain organic solvents can 
lead to the disruption of cell membranes, microbes have 
developed defense mechanisms [83]. These include the 
formation of hydrophobic or solvent efflux pumps that 
serve as defensive barriers for the outer cell membrane 
[55, 83].

Among various modes of action of microbes, bioleach-
ing, bioaccumulation, biotransformation, biosorption, 
biomineralization, reduction, and bio-oxidation are the 
key processes by which microbes contribute to bioreme-
diation of e-waste. The detailed mechanisms involving 
microbes in e-waste degradation are discussed below.

Biodegradation of PAHs
A number of polychlorinated biphenyls (PCBs), polyaro-
matic hydrocarbons (PAHs), and volatile organic com-
pounds (VOCs) are found in e-wastes. A diverge range 
of microbes have the potential to release biosurfactants 
which reduces the surface tension of these oily substances 
and converts them into smaller particles so that they can 
be absorbed by the cells for further metabolism [112]. 
Polyaromatic hydrocarbons (PAHs) are complex organic 
pollutants primarily produced through incomplete com-
bustion processes [76]. These pollutants, released into the 
environment by both human activities and natural pro-
cesses, disperse globally through air and water currents. 
They contaminate air, plants, and food, accumulating in 
organisms as they move up the food chain (Ghosal et al., 
2017). Escalating levels of PAHs, notably from improper 
e-waste disposal, raise concerns about potential health 
risks such as cancer (Shengtao et  al., 2022). Prolonged 
exposure to PAHs also increases the risk of asthma and 
cardiovascular diseases [72].

Certain bacteria have been identified for their ability 
to degrade high molecular weight PAHs. Key bacterial 
genera involved in PAH degradation includes Bacillus 
sp., Mycobacterium sp., Rhodococcus sp., Pseudomonas 
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Table 2  Microorganisms involved in e-waste degradation

Sl. no E-waste material Source Name of microbes Reference

1 Ni, Cd Mobile and computer PCBs, Ni–Cd bat-
teries

A. ferrooxidans  Arshadi et al.,  2015

2 Al, Cu, Mn, Zn PCBs A. thiooxidans Hong et al.,2014

3 Cu, Al, Zn, Ni PCBs S. thermosulfidooxidans [145]

4 Ni, Cd, Co, Zn ZMBs & Ni–Cd batteries Mixture of A. fumigatus A. flavipes, A. japoni-
cus A. tubingensis, A. versicolor, A. niger

[98]

5 Au, Ag, Cu Sim card, electronic scrap Chromobacterium violaceum [44], [124], [147]

6 Au, Cu Computer and mobile PCBs B. megaterium Arshadi et al., 2015

7 Cu, Au PCBs Pseudomonas putida Isildar et al., 2016

8 Cu, Ni Cell phone PCBs Penicillium simplicissimum [11]

9 Pb, Hg, Ni PCBs Saccharomyces cerevisiae [94]

10 Cu, Zn, Ni Cell phone PCBs Leptospirillum ferriphilum-dominated 
consortium

[154]

11 Zn, Ni, Cu WPCBs Aspergillus niger [62]

12 Cu, Cr, Sn, Zn, Ni PCBs L. ferriphilum [36]

13 Zn, Mn Spent Zn-Mn batteries Alicyclobacillus sp., Sulfobacillus sp. [185]

14 Cu, Zn, Pb, Ni PCBs A. ferrooxidans Priya et al., 2018

15 Au Electronic scrap Chromobacterium violaceum, Pseudomonas 
aeruginosa, and Pseudomonas fluorescens

[125]

16 Cu PCBs Acinetobacter sp. Cr B2 Jagannath et al., 2017

17 Zn, Cu, Al, Pb, Sn PPCBs L. ferriphilum, A. caldus [182]

18 Au, Ag Computer PCBs Pseudomonas balearica SAE1 [99]

19 Ba, Pb, Ca, Si, Cd CRTs Serratia plymuthica [131]

20 Au, Cu, Ni Cell phone PCBs and computer gold finger 
motherboards

Aspergillus niger Madrigal A. et al., 2015

21 Zn, Cu, Pb, Cd, Ni, Cr PCBs A. thiooxidans, Bacillus subtilis PCM 2021, 
and Bacillus cereus PCM 2019

[96]

22 Cu, Zn, Ni, Pb, V, Mo, Al, Co, Li PCBs Aspergillus niger and Penicillium simplicis-
simum

[51]

23 Cu, Al, Ni, Zn Electronic scrap Aspergillus niger, Penicillium simplicissimum [30]

24 Cu PCBs Acidithiobacillus sp., Gallionella sp., Lepto-
spirillum sp., Redoxolysis sp.

[184]

25 Cu TV circuit boards A. ferrooxidans, Leptospirillum ferrooxidans, 
A. thiooxidans

[22]

26 Au, Ag, Cu Cell phone PCBs Pseudomonas chlororaphis Martinez D. et al., 2019

27 Cu, Zn, Al, Ni PCBs Sulfobacillus thermosulfidooxidans 
and Thermoplasma acidophilum

[88]

28 Ni, Cu, Al, Zn Electronic scrap Sulfobacillus thermosulfidooxidans [87]

29 Au Cell phone PCBs Pseudomonas putida and Bacillus mega-
terium

[192]

30 Cu, Ni, Zn Computer PCBs Aspergillus tubingensis Trivedi and Hait 2020

31 Hg, Pb PCBs Frankia casuarinae [123]

32 Cu, Al, Zn WPCBs Acidophilic consortium (genera Acidithioba-
cillus sp.) and Gallionella sp.

[193]

33 Al, Cu, Ni, Zn Electronic scrap S. thermosulfidooxidans [86]

34 Cu, Pb, Ni Spent batteries Aspergillus nomius JAMK1 [42]

35 Ag, Au, Cu Mobile phone PCBs Aspergillus niger, Candida orthopsilosis, 
Sphingomonas sp. consortium

Martinez et al., 2019

36 Cu, Al, Pb, Zn, Sn Low-grade PCBs Purpureocillium lilacinum and Aspergillus 
niger

[183]
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sp., and Achromobacter sp. [76]. Mycobacteria, a type 
of actinomycetes, possess intrinsic resistance to adverse 
conditions and are particularly adept at decomposing 
heavy metals, polychloro derivatives of phenols, and vari-
ous PAHs (Azadi et al., 2020). Bacteria typically degrade 
PAHs using enzymatic activities like oxygenases and 
peroxidases. Examples include AlkB from Pseudomonas 
sp., naphthalene monooxygenase from P. putida, and 
cytochrome P450 from yeast species such as C. maltosa 
and C. tropicalis [59], (Das et  al., 2011). Various fungi, 
including basidiomycetes, deuteromycetes, and white-rot 
fungi, have also demonstrated PAH degradation capa-
bilities [134]. Unlike bacteria, fungi utilize PAHs along-
side other carbon sources, producing oxidized products 
including carbon dioxide (CO2) [132]. White-rot fungi 
species such as Phanerochaete chrysosporium are par-
ticularly efficient at removing PAH chemicals due to 
their production of extracellular ligninolytic enzymes 
such as lignin peroxidase, manganese peroxidase (MnP), 
and laccase (Lac) [1, 100]. Despite the potential of bac-
teria and fungi in degrading PAHs, challenges exist. 
Some bacteria struggle to digest PAHs effectively, and 
simultaneous degradation of different PAH types is chal-
lenging due to factors like bioavailability and metabolic 
interactions [79]. Cometabolism, however, plays a cru-
cial role in breaking down PAHs synergistically, making 
it easier for specific bacteria to degrade a wider range of 
PAHs, particularly those with high molecular weights 
[79]. Furthermore, a significant challenge hindering PAH 

bioremediation is the understanding of their dynamics 
in soil and marine ecosystems. Most emitted PAHs get 
trapped under coal tar and black-clayish carbon particles, 
significantly reducing their bioavailability [132]. Address-
ing these challenges requires further research and atten-
tion. The overall process of microbial degradation of PAH 
is depicted in Fig. 2.

Biodegradation of azo dye components of e‑waste
When discussing e-waste, it is crucial to address the 
significant impact of azo dyes. Azo dyes are the most 
widely manufactured type of dye worldwide, account-
ing for approximately 80% of all dye production [149]. 
These dyes, produced through a straightforward process 
of diazotization and coupling, play a pivotal role in the 
dyeing and printing market [23]. Recently, there has been 
a rise in functional dyes tailored for high-tech applica-
tions, such as optoelectronics (e.g., photochromic mate-
rials, dye-sensitized solar cells, liquid crystal displays), 
electronic materials (e.g., organic semiconductors), and 
imaging technologies (e.g., electrophotography, thermal 
printing) [58]. Various electronic devices, including ther-
mal transfer printers, lasers, nonlinear optical devices, 
and fuel cells, utilize these dyes [23]. Moreover, new 
azo-cyanine dyes with high molar absorptivity have been 
investigated for their potential as cyanine photosensitiz-
ers in the development of novel photodynamic therapy 
(PDT) agents [58]. However, there is growing concern 

Fig. 2  The illustration demonstrates the initial degradation of PAHs and VOCs by microbial biosurfactants, followed by their internalization 
and subsequent breakdown by various microbial enzymes. This initial degradation occurs through peripheral metabolic pathways 
before the compounds enter the tricarboxylic acid (TCA) cycle, ultimately resulting in the release of simpler and less toxic byproducts
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about the use of azo dyes in these sectors due to health 
risks and severe environmental consequences [111].

Many studies advocate for bioremediation approaches 
to address the remediation of azo dyes [149], (El-Rahim 
et al., 2021). Microorganisms, particularly bacteria, have 
garnered global attention for their ability to efficiently 
degrade a wide range of dyes under anaerobic or aero-
bic conditions [107]. For example, commonly used dyes 
like Congo Red in sectors such as printing have been 
effectively degraded by microorganisms; for instance, 
microbes like Dichotomomyces cejpii MRCH 1–2 and 
Phoma tropica showed a 95% degradation rate (Krishna-
moorthy et al., 2017). However, the degradation pathways 
of azo dyes used in electronics and their specific environ-
mental impact warrant further investigation, as there is 
limited literature exploring azo dyes in the electronics 
sector.

Bioleaching
Bioleaching involves the utilization of acidophilic micro-
organisms to aid in the solubilization of heavy metals that 
are solid inside a sediment matrix [150]. This method is 
particularly effective for contaminants such as iron or sul-
fur [24, 162]. Bioleaching processes may be of two types: 
“direct” and “indirect.” Direct leaching involves electron 
transfer occurring directly from the metal sulfide to the 
cell connected to the mineral surface. Indirect leaching, 
on the other hand, occurs through the action of metal 
ions, such as iron (III) ions. These ions are produced by 
iron(II)-oxidizing bacteria, which can be free-floating or 
attached to the mineral surface. They function as metal 
sulfide-oxidizing agents [114]. In the realm of bioleach-
ing, specific organisms are commonly employed for their 
metal extraction abilities [162]. Bacteria such as Thioba-
cillus thiooxidans, T. ferrooxidans, Leptospirillum ferriph-
ilum, and Acidithiobacillus ferrooxidans, among others, 
as well as fungi such as Aspergillus niger and Penicillium 
simplicissimum, have found extensive usage in extract-
ing metals from electronic waste materials (Brandl et al., 
2000; [2]). Autotrophic bacteria (e.g., Thiobacilli sp. and 
Sulfobacillus benefaciens), heterotrophic bacteria (e.g., 
Pseudomonas sp. and Bacillus sp.), and heterotrophic 
fungi (e.g., Aspergillus sp. and Penicillium sp.) represent 
the three principal categories of microorganisms that 
play active roles in the bioleaching of metals [150]. These 
microorganisms possess the capability to extract metals 
from sulfide or iron-containing ores and mineral concen-
trates (Gokul et al., 2019).

Among them, the fungus Aspergillus niger stands out 
for its ability to produce organic acids such as citric, 
gluconic, oxalic, and malic acids (Biswal et  al., 2023). 
These organic acids act as strong chelating agents in the 
bioleaching process, allowing metals to be recovered 

from materials such as lithium-ion batteries (Biswal et al., 
2023). Numerous studies have also demonstrated that 
Aspergillus niger generates gluconic acid, which can che-
late and dissolve substantial amounts of different metals, 
including Li, Cu, Mn, Al, Ni, and Co (Horeh et al., 2018; 
Biswal et  al., 2023). Furthermore, some research has 
found that Aspergillus niger may leach zinc oxide, while 
Penicillium sp. is often used in gold recovery bioleaching 
approaches (Trivedi et al., 2021; [148]). Metals such as Al, 
Zn, Cu, and Cd have been efficiently recovered from fly 
ash by Aspergillus niger (Annamalai et al., 2019).

Studies show that Chromobacterium violaceum is 
capable of detoxifying cyanide with the help of the 
beta-cyanoalanine synthase enzyme [13]. This species 
is potentially useful in the biological recovery of gold 
from e-waste. Additionally, it has been discovered that 
Chromobacterium violaceum can also participate in the 
leaching of gold and copper from waste mobile phone 
printed circuit boards (PCBs), showcasing its potential 
in metal recovery processes [2, 44]. On the other hand, 
Pseudomonas fluorescens is capable of catabolizing cya-
nide via the action of cyanide oxygenase. P. fluorescens 
proved to be more efficient in the bioleaching of gold 
compared to C. violaceum, even though it produces more 
cyanide than C. violaceum in the absence of electronic 
waste (Annamalai et  al., 2019), [101]). An extensive lit-
erature survey shows Thiobacillus ferrooxidans as one of 
the most well-studied organisms for the microbial leach-
ing of iron and sulfur with futuristic applications [130]. 
Despite bioleaching being a promising method with 
futuristic potential, it is time-consuming, yet eco-friendly 
in nature. Towards large-scale application, the slow rate 
of the process and metal toxicity towards microorgan-
isms are significant setbacks [21]. Hence, there is a scope 
for further improvement in this method. A few con-
temporary research studies have demonstrated that the 
process of bioleaching may be improved by maintaining 
optimum pH, O2, and CO2 levels, temperature, and min-
eral substrate supply to favor the maximum growth of the 
microbes as well as by promoting the formation of bacte-
rial biofilm for the process [67, 175].

Biosorption
The absorption and binding of ionized hazardous metals 
onto the cell surface is the basis of the biosorption pro-
cess [155]. In the presence of ATP, metabolism-depend-
ent biosorption occurs through processes such as 
chelation-a unique mechanism where ions and mole-
cules attach to metal ions by forming two or more coor-
dinate bonds between a polydentate ligand and a single 
central atom. Additionally, physical adsorption, a sur-
face phenomenon, creates a film of the adsorbate on the 
surface of the adsorbent [155]. In the absence of ATP, 
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biosorption occurs through a variety of mechanisms such 
as adsorption, ion exchange, and covalent bonding. These 
mechanisms are governed by the chemiosmotic gradi-
ent potential [19]. Based on the cell metabolism require-
ment and the nature of metal contamination, biosorption 
pathways may be classified as metabolism-dependent or 
metabolism-independent [27]. Physicochemical inter-
actions between functional groups on the cell surface 
of bacteria and metals occur through metabolism-inde-
pendent pathways, involving chemical sorption, physi-
cal adsorption, and ion exchange [139]. Carbohydrates, 
lipids, and proteins in microbial cells consist of metal-
absorbing groups such as phosphate, sulfate, amino, and 
carboxyl groups [3].

Because of their capacity to bond with e-waste in 
aqueous solutions, microbes are referred to as biosorb-
ents [7]. It is critical to examine the microbial stability of 
biosorbents by analyzing their nature, including sorption 
kinetics, regeneration, maximal sorption capacity, and 
recovery of associated metals [95]. Dead biomass, live 
cells, or polymers derived from their metabolic processes 
are utilized as biosorbent materials in the biosorption of 
heavy metals (Fomina et al., 2014), [48],).

Filamentous fungi with strong metal-absorbing capac-
ity include Aspergillus, Rhizopus, Mucor, Penicillium, 
Actinomycetes, and Streptomycetes (Verma et  al., 2019). 
Fungi can survive and detoxify metal ions by absorbing 
them in their mycelium and spores (Ayangbenro et  al., 
2017). Aspergillus parasitica and Cephalosporium aphid-
icola are even known to remediate Pb-polluted areas [6].

Microbes display varying biosorption capabilities due 
to their functional groups. Negatively charged functional 
groups, such as hydroxyl (OH−), phosphate (PO4

3−), and 
carboxyl (CO−), bind to metal ions strongly [47, 55]. Ion 
exchange can also be facilitated by bacterial functional 
groups such as carboxyl (COO−) and sulfate (SO4

2−) 
groups of uronic acid [47]. Gram-positive bacterial cell 
walls, which contain alanine, glutamic acid, meso-di-
aminopimelic acid, and teichoic acid, and gram-negative 
bacteria’s cell walls, which contain lipoproteins, glycopro-
teins, lipopolysaccharides, phospholipids, and enzymes, 
act as ligands for actively binding metal ions (Ayang-
benro et al., 2017).

Yeasts are also considered attractive biosorbents due 
to the presence of polysaccharides in their cell wall. 
Candida tropicalis, Saccharomyces cerevisiae, and 
Streptomyces longwoodensis show potential for heavy 
metal adsorption, including cadmium (Cd), chro-
mium (Cr), copper (Cu), nickel (Ni), zinc (Zn), and 
lead (Pb) [47]. The yeast strain Saccharomyces cerevi-
siae, commonly referred to as baker’s yeast, has dem-
onstrated convenience in retaining metal ions such 

as cobalt and copper [151]. Yeasts such as S. cerevi-
siae can also serve as bioremediation agents via pro-
cesses such as ion exchange [106]. Bacteria and fungi 
are attractive biosorbents for e-waste remediation due 
to their capacity to grow in a variety of environmental 
conditions.

Algae have a remarkable biosorption capacity mak-
ing them highly efficient compared to other microbes 
due to their substantial biomass [9, 50]. This biosorp-
tion method acts through an ion exchange mechanism. 
Brown marine algae (e.g., Fucus vesiculosus), with func-
tional groups like COO−, SO3

−, SH, and NH2, effec-
tively remediate metals such as cadmium, nickel, and 
lead (Mustapha et al., 2015).

Biosorption is widely used as a biological tool for the 
accumulation of heavy metals, which are hazardous to 
the environment, through physico-chemical pathways 
of uptake due to its suitability with different environ-
mental conditions (Errasquin et al., 2003). However, its 
effectiveness is dependent on the biosorbent materials 
used and the associated costs [151].

Biotransformation
Biotransformation, in the context of e-waste reme-
diation, refers to the chemical alteration of metals by 
microbes or changes in their oxidative state caused by 
electron addition or removal by microbial agents, play-
ing an important role in transforming chemical pollut-
ants into more environmentally friendly compounds 
(Karigar et al., 2011; Das et al., 2012).

Various fungi, including Allescheriella sp., Botry-
osphaeria rhodina, Klebsiella oxytoca, Phlebia sp., and 
Stachybotrys sp., have demonstrated high metal bind-
ing capability [49]. Additionally, gram-positive bacte-
ria strains, such as Cellulosimicrobium sp., have shown 
tolerance against xenobiotics and heavy metals such as 
Cd, Hg, Cr, and Pb (Bhaiti et al., 2019). In a study con-
ducted by Thatoi and his team in 2014, a strain of bac-
teria known as Bacillus sp. SFC 500 was documented to 
reduce chromium into its less toxic form through bio-
transformation. Furthermore, research has shown the 
efficacy of fungi, such as Rhodobacter sphaeroides, in 
eradicating hydrophobic toxic metals like zinc and cad-
mium from the soil [135].

Metal biotransformation can be categorized as direct 
or indirect (Balfourier et al., 2023). Direct biotransfor-
mation, also known as enzymatic biotransformation, 
utilizes microbial enzymes to change oxidation states, 
resulting in the reduction of harsh multivalent metals 
[160]. In contrast, metal-reducing microbes immobilize 
metals in sedimentary and subsurface settings, stabiliz-
ing multivalent hazardous metals (Tabak et al., 2005).
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Bioaccumulation
Bioaccumulation harnesses microbial capacity to 
absorb toxic metals and store them within their cellular 
vacuoles through a detoxification mechanism and an 
active process [85]. It requires energy for metal absorp-
tion and detoxification within the vacuoles (Errasquin 
et  al., 2003). As a result, metals are taken from the 
environment and sequestered inside living cells, result-
ing in remediation (Das et al. 2012). Plants and micro-
organisms are efficient in eliminating metals through 
accumulation when used for bioremediation of metal-
contaminated environments [54]. When paired with 
techniques such as phytodegradation, this approach 
delivers improved heavy metal removal [127]. Metals 
are incorporated into living biomass through bioaccu-
mulation [45].

Tolerance to metals such as arsenic (As), mercury 
(Hg), cobalt (Co), iron (Fe), and chromium (Cr) was 
tested in several native strains of Bacillus sphaericus, 
along with the assessment of bioaccumulation in live 
biomass, where it was shown that both living and dead 
cells showed immense capacity of metal bioaccumula-
tion (Velásquez et al., 2009).

Gram-positive bacteria such as Tsukamurella pauro-
metabola, and Gram-negative bacteria, Pseudomonas 
aeruginosa, have been used in cadmium (Cd) and zinc 
(Zn) bioaccumulation [127]. The study has also looked 
at lead (Pb), cadmium (Cd), arsenic (As), and mercury 
(Hg) removal by S. cerevisiae, Pseudomonas putida, and 
Fusarium flocciferum [109, 127, 141]. Another study 
compared the bioaccumulation of copper (II), lead (II), 
and chromium (VI) by Aspergillus niger, where A. niger 
was shown to be extremely susceptible to all levels of 
chromium (VI) concentrations [57]. These findings 
suggest that A. niger could serve as an effective living 
biosorbent for the removal of heavy metal ions [57]. 
Bacteria such Bacillus circulans, Bacillus megaterium, 
and Deinococcus radiodurans and fungi such as Asper-
gillus niger and Monodictys pelagica are also reported 
to accumulate Cr, U, and Pb from electronic waste 
(Patel et al., 2014).

Recombinant E. coli has also been reported by 
researchers for their role in cadmium bioaccumulation 
by expressing metallothionein (MT) in the cytosol [105]. 
Another study highlighted a twofold increase in cad-
mium bioaccumulation with glutathione and synthesis of 
phytochelatin expressing MT (González et al., 2021).

This technology is largely dependent on the growth rate 
of the microorganisms used in this method and also on 
their ability to accumulate the heavy metal. Besides, the 
success rate in field trials is still far behind in comparison 
to in vitro findings. However, the cost effectiveness of this 
method cannot be ruled out.

Biomineralization
Biomineralization entails the microbial synthesis of spe-
cific inorganic substances using substrate molecules, 
benefiting the biological system (Kim et  al., 2013). This 
process includes microorganisms accumulating anions 
or ligands, which then bind to hazardous metal contami-
nants and precipitate (Patel et al., 2014). It is a frequently 
employed method for treating e-waste components such 
as hazardous heavy metals and polymers via degradation 
or precipitation [190]. As a result, polluting metals trans-
form into moderately stable forms, while organic mole-
cules fracture into less hazardous and more stable states 
(Ayangberno et al., 2017).

There are two types of biomineralization, viz., biologi-
cal induced mineralization (BIM) and biological con-
trolled mineralization (BCM) [122]. In some situations, 
BIM causes mineral production inside cells or on cell 
surfaces [56]. On the other hand, BCM includes extracel-
lular mineral production due to the metabolic capacities 
of microbes [4].

Metallophilic bacteria, Cupriavidus metallidurans, 
can aid in cellular detoxification hence proving to be a 
potential candidate in accumulating Au (III) [144]. Addi-
tionally, bacterial strains such as Bacillus fusiformis and 
Sporosarcina ginsengisoli, along with Cupriavidus metal-
lidurans, are well known for their role in the biominer-
alization process, effectively eliminating heavy metals 
such as cadmium, arsenic, and lead [4]. Another study 
led by Achal (2012) demonstrated the excellent biomin-
eralization capability of arsenic (As III) by Sporosarcina 
ginsengisoli.

Although the method of biomineralization has received 
much attention in recent days, limitations related to the 
efficiency of the microbes to be employed and the degree 
of contamination in the affected area are some of the fac-
tors which also play a major role in biomineralization.

Enzymatic degradation of e‑waste
As an environmentally friendly biotechnological tech-
nology, bioremediation employs biological agents such 
as plants, bacteria, and their enzymes to transform haz-
ardous pollutants into less toxic or non-harmful chemi-
cals via various metabolic pathways [17]. Scientists have 
discovered that numerous enzymes originating from 
microorganisms (bacteria and fungi) and plants play an 
important role in the bioremediation of pollutants [120]. 
The enzymatic actions of important enzymes, such as 
oxidoreductases, dioxygenases, and hydrolases have been 
extensively studied (Fig. 1) (Karigar et al., 2011). Micro-
bial enzymes such as reductases, laccases, esterases, car-
boxylesterases, catalase, dismutases, and dioxygenases 
show their ability to convert various heavy metals and 
PAHs into their less toxic forms (Table  3), [60, 92, 120, 
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166] (Keum et al., 2004; Saravanan et al., 2021; Erickson 
et al., 1992;).

Microbial enzymatic pathways play an important role 
in many stages of bioremediation, interacting with haz-
ardous contaminants and converting them to harmless 
substances [25]. Enzymes offer benefits such as substrate 
specificity, independence from microbial growth rates, 
uniformity, and simplicity of handling and storage, mini-
mizing dependency on toxic chemicals [39].

Various enzymes exhibit diverse capabilities when it 
comes to degrading heavy metal pollutants from e-waste 
[120]. Enzymes such as Cytochrome p450, nitrilases, 
dihydrodiol dehydrogenase, esterases, amidases, lac-
cases, proteases, MnP (manganese peroxidase), glucose 

oxidase, and glyoxal oxidase play an essential role in 
breaking down different classes of contaminants [25, 97, 
142]. Natural enzymes are generally preferred due to 
their cost-effectiveness. However, emerging technologies 
such as genetic engineering, recombinant techniques, 
and nanotechnology offer promising opportunities to 
produce more efficient enzymes [120]. This is because 
these technologies can be tailored to change the amino 
acid sequences of enzymes to achieve specific pH, tem-
perature tolerance, stress resistance, and other meta-
bolic properties necessary for the bioremediation of 
heavy metals [25]. However, enzyme production can be 
enhanced by genetic engineering by transferring coding 
genes for expression [75]. It is also expected that under 

Table 3  Microbial enzymes involved in e-waste degradation

Sl. no Name of the enzymes involved Name of the microorganisms Bioremediation potential Reference(s)

1 Chromium reductase Pseudomonas sp. MA14, P. putida, 
Bacillus, Enterobacter sp., Deinococcus 
sp., Gluconacetobacter hansenii

Reduces hexavalent chromium Cr 
(IV) to Cr (III)

Thatoi H. et al., 2014; [92]

2 Laccase Trametes versicolor, Raoultella plan-
ticola, Trametes pubescens, white rot 
fungi (Phanerochaete chrysosporium)

PCBs (polychlorinated biphenyls), 
lead (Pb), nickel (Ni), epoxidation, 
cadmium (Cd)

Keum et al., 2004

3 Esterases, carboxyl esterases E2 E. coli, Pseudomonas aeruginosa PA1 Phthalate acid esters (PAEs), Mercury 
ion [Hg (2+)]

[120, 189]

4 Catalase and superoxide dismutase Aspergillus spp., E.coli, Streptococcus 
sp., B. cepacia, Enterobacter cloacae B1

Lead (Pb), cadmium (Cd), nickel (Ni) [20]

5 Biphenyl dioxygenase and biphenyl 
2,3-dioxygenase

B. cepacia LB400 and Pseudomonas 
aeruginosa, Pseudomonas alcaliphila 
JAB1

Degradation of PCBs Erickson et al., 1992

6 Cupric reductase Streptomyces sp. Reduction of copper (Cu) Saravanan et al., 2021

7 ChrR (quinone reductase) E. coli, Geobacter sp. Reduce Cr (VI) and uranyl [U (VI)] 
to Cr (III) and U (IV)

[60]

8 Biphenyl dioxygenase (bphC) Dehalococcoides spp. Efficiency towards PCBs, high chlorin-
ated PCBs, and less chlorinated PCBs

Hasmi et al., 2016

9 Reductive dehalogenase Dehalococcoides mccartyi (Dhc) Tetrachloroethene (PCE) [110]

10 Laccase, manganese peroxidase, ver-
satile peroxidase, lignin peroxidase, 
dye decolorizing peroxidase, glyoxal 
oxidase

P. chrysosporium Chlorophenols, PAHs, PCBs [143]

11 Cytochrome P-450 monooxygenase A. cylindrospora Efficiency towards anthracene 
and fluoranthene

[71]

12 Monooxygenases Paecilomyces lilacinus Efficiency towards chlorinated biphe-
nyl derivatives

[158]

13 Cytochrome P450 monooxyge-
nases (P450s), epoxide hydrolases, 
glutathione S-transferases, NAD(P)H 
quinone oxidoreductases, and UDP-
glucuronosyltransferases

Aspergillus terreus and Cladosporium 
oxysporum

Endosulfan [108, 121]

14 Lignin peroxidase (LiP) and manga-
nese-dependent peroxidase (MnP)

Fusarium solani Anthracene (ANT) and benz[a]
anthracene (BAA)

[180]

15 Cytochrome P450 monooxyge-
nases (P450s), epoxide hydrolases, 
glutathione S-transferases, NAD(P)H 
quinone oxidoreductases, and UDP-
glucuronosyltransferases

Trichoderma species Petroleum hydrocarbons [10, 108]
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natural conditions, recombinant enzymes would excel in 
pollutant breakdown [115].

The overall molecular mechanisms involved in bioleach-
ing, bioaccumulation, biotransformation, biosorption, 
biomineralization, reduction, and bio-oxidation are depicted 
in Fig. 3.

Challenges associated with bioremediation
Despite technological breakthroughs and cost-effective-
ness when compared to older processes such as incin-
eration or landfilling, bioremediation confronts several 
challenges. Certain e-waste components, such as chlorin-
ated organic chemicals and strongly aromatic hydrocar-
bons, resist bacterial decomposition (Viswakarma et al., 
2020). The type and amount of contaminants, soil tex-
ture, geographical location, and adsorption by soil par-
ticles all have an impact on bioremediation effectiveness 
(Temitope et al., 2022). Bioremediation selectivity neces-
sitates the use of particular microbial species, proper 
growth conditions, and enough food availability (Philip 
et al., 2005).

Microbial competition, post-inoculation decline, tem-
perature, pH, oxygen levels, wetness, and other environ-
mental conditions all have an impact on bioremediation 
[77, 104]. Pollutant solubility increases as temperature 
rises [136]. A lack of in-depth knowledge of physiology, 
microbial ecology, gene expression, and site-specific vari-
ables is also a barrier. Developing advanced bioremedia-
tion technologies suitable for complexly polluted sites 
with diverse toxic pollutants remains a challenge [46].

There is disarray regarding bioremediation accept-
ance criteria, and no widely accepted explanation or 
treatment technique exists (Sharma, 2021). Assess-
ing bioremediation potential is complex, as the inhibi-
tion of microorganisms by toxic heavy metals depends 
on factors like metal ion concentration, redox potential, 
and environmental conditions [85]. The effectiveness of 
metal-microbe complex stabilization is dependent on 
parameters such as sorption sites and microorganism cell 
wall structure [85]. Overall, the efficiency of bioremedia-
tion is determined by the substrate subjected to treat-
ment and the unique environmental circumstances at 
hand (Anekwe et al., 2022).

Fig. 3  Various modes of action of microbes involved in the biodegradation of e-waste
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Potential roles of genetically modified organisms 
(GMOs) in degrading e‑waste components
Genetic engineering presents promising opportuni-
ties for mitigating various heavy metals and pollutants, 
including polyaromatic hydrocarbons (PAHs), which 
are often challenging to address through conventional 
bioremediation methods (Verma et al., 2019). Genetically 
modified organisms (GMOs) offer significant advantages 
for bioremediation due to their environmentally friendly 
nature and reduced health risks compared to physio-
chemical methods, which are less eco-friendly and pose 
potential dangers to life [91].

For instance, E. coli JM109 modified with pCLG2 (M5) 
and pGPMT (M4) plasmids demonstrated enhanced 
absorption of Cd2+ due to the expression of the cadmium 
transport system and metallothionein (MT) in M4, effec-
tively doubling the strain’s original absorption capacity 
[52]. In another study, Huang et al. [82] utilized a geneti-
cally modified Bacillus subtilis strain 168 to methylate 
and volatilize arsenic (As) with the CmarsM gene from 
heat-resistant algae Cyanidioschyzon merolae, poten-
tially aiding in the cleanup of As-contaminated com-
post. Li et  al. [102] employed a novel approach, STAR, 
using CRISPR-ddAsCpf1 to enhance the electron trans-
fer capacity of Shewanella oneidensis MR-1, leading to 
improved bioreduction of heavy metals like chromium.

Furthermore, certain enzymes can transform heavy 
metals (HMs) into less toxic forms. For example, when 
the mercury resistance gene merA from Deinococcus 
radiodurans is expressed in E. coli BL308, it enables the 
bacterium to tolerate higher concentrations of Hg (II) 
and convert it into less toxic Hg (0) [34]. Researchers have 
identified metal-binding peptides responsible for captur-
ing heavy metals (HMs), such as cadB for cadmium (Cd) 
(II) and zinc (Zn) (II), pbrT and pbrD for lead (Pb) (II), 
and copM for copper (Cu) (II), while metallothioneins 
with cysteine and sulfhydryl groups are utilized for HM 
binding [70, 181].

In addition to heavy metals, genetically modified 
organisms have shown effectiveness in degrading polyar-
omatic hydrocarbons (PAHs). The breakdown of PAHs 
by genetically engineered microorganisms (GEMs) relies 
on specific enzymes such as dioxygenase, monooxyge-
nase, hydroaldolase, and dehydrogenase [43]. Changes 
in degradation pathways and efficiency often depend 
on variations in enzymes encoded by functional genes 
[43]. These functional genes are frequently utilized to 
construct GEMs responsible for degrading PAHs. For 
example, Mohtashami et  al. [118] inserted the laccase 
gene (poxa1b) from Pleurotus ostreatus into E. coli BL21, 
resulting in the oxidation of benzo[α]pyrene by 17%. 
They co-expressed pdoAB with plasmid pBRCD, achiev-
ing oxidation for phenanthrene, pyrene, anthracene, 

and benzo[α]pyrene, facilitated by electron transfer 
components from plasmid pBRCD. However, no litera-
ture shows successful field implementation of GMOs in 
degrading e-waste components from the best of our 
knowledge.

Future prospective
The importance of addressing the current pace and quan-
tity of e-waste, as well as its environmental effects, can-
not be overstated. The current scenario highlights that 
inadequately managed e-waste recycling processes result 
in the release of enduringly hazardous substances like 
PBDEs and PCDDs into the atmosphere, residual ash, 
airborne particles, soil, water, and the nearby environ-
ment. Furthermore, as shown by Miller et al. [113], these 
hazardous elements eventually make their way into both 
oceanic and terrestrial ecosystems, sparking a process of 
bioaccumulation and biomagnification.

As the accumulation of such hazardous chemicals 
continues to rise, the availability of extractable elements 
diminishes. Scientists have developed environmentally 
friendly appropriate methods for recycling and recov-
ering toxic substances from waste to avert disastrous 
repercussions. These measures not only enhance human 
health but also have significant environmental effects, 
both now and in the future [152]. Additionally, the adop-
tion of bioremediation methods has gained substantial 
traction for the purification of landfills and groundwater 
reservoirs [137].

Despite the array of techniques available for waste 
management, there persists a deficiency in their appro-
priate implementation, both in developed and developing 
countries, even within the framework of improvement 
(Ferronato et  al., 2019). However, the pressing neces-
sity for well-defined regulations, maintenance protocols, 
and comprehensive policies to monitor health and envi-
ronmental issues stemming from toxic metals cannot be 
understated. This need is particularly relevant in the cur-
rent context and remains a priority for the future.

Conclusions
The rapid increase in e-waste poses a significant chal-
lenge that requires immediate attention. This problem 
has global ramifications, impacting regions worldwide 
with a wide range of difficulties associated with e-waste 
disposal. Addressing this challenge is crucial as we strive 
for a sustainable future. As research progresses, new 
technologies are emerging to confront this impending 
disaster, each with its own advantages and disadvantages. 
However, the practicality of any advancement lies in its 
ability to serve humanity in a cleaner and more environ-
mentally friendly manner. Microorganisms offer a prom-
ising solution to this issue through various mechanisms 
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such as biosorption, bioleaching, biotransformation, 
bioaccumulation, and enzymatic pathways. It has been 
found that microorganisms can effectively remediate a 
wide range of e-waste, including hydrocarbons like poly-
chlorinated biphenyls (PCBs), pharmaceuticals, oil, and 
polyaromatic hydrocarbons (PAHs), in an eco-friendly, 
reliable, and economically feasible manner. Furthermore, 
certain microbes have been observed to facilitate the 
leaching process, potentially opening up new avenues in 
metallurgy and metal extraction from ores. However, it is 
important to note that microbial degradation processes 
are often more time-consuming compared to physical 
and chemical methods. Nonetheless, there is significant 
potential for improving microbial degradation processes 
through modern biotechnological interventions in the 
future.
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